Edition: 2021-05 Replaces: 2013-04

Directional spool valves, direct operated, with manual and fluidic operation

Type WMM, WN and WP

- ▶ Size 10
- ► Component series 5X
- ► Maximum operating pressure 350 bar
- ► Maximum flow 160 l/min

Features

- ▶ 4/3-, 4/2- or 3/2-way version
- ▶ Porting pattern according to ISO 4401-05-04-0-05
- ► Types of actuation:
 - Hand lever
 - Pneumatic
 - Hydraulic

Contents

Features	1
Ordering code	2
Symbols	3
Types of actuation	4, 5
Function, section	6
Technical data	7, 8
Characteristic curves	9
Performance limits	10, 11
Dimensions	12 15
Further information	15

Ordering code

01	02	03	04	05		06		07	80	09	10	11
		10		5X	/		/					*

01	3 main ports	3	
	4 main ports	4	

Types of actuation

02 - Manual	
Hand lever	WMM
- Fluidic	•
Pilot pressure 1.5 10 bar	WN
Pilot pressure 8 160 bar	WP
03 Size 10	10
04 Symbols; possible version see page 3 5	
05 Component series 50 59 (50 59: unchanged installation and connection dimensions)	5X
06 With spring return	no code

06	With spring return	no code
	Without spring return (not for valves with 3 switching positions and version "WMM")	0
	With detent (not for versions "WN" and "WP")	F
	Without spring return with detent (not for valves with 3 switching positions and version "WMM")	OF

Corrosion resistance (outside)

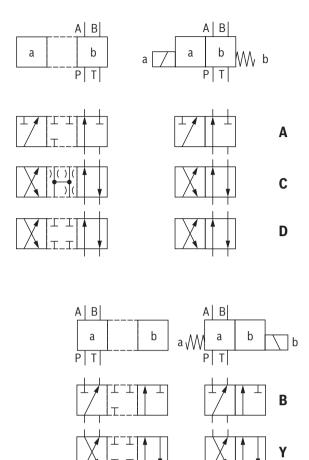
07	None (valve housing primed)	no code
	Improved corrosion protection (720 h salt spray test according to EN ISO 9227); (only version "WMM")	J5

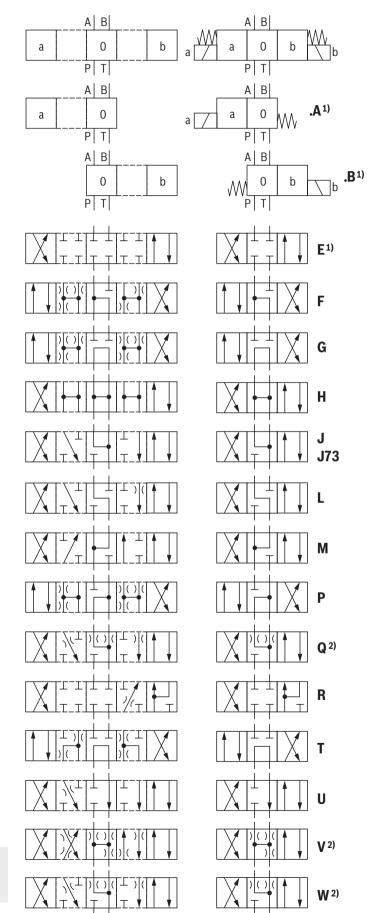
Throttle insert 1)

Without throttle insert							
With throttle insert:							
Connection		Throttle Ø in mm					
	0.8	1.0	1.2				
Р	= B08	= B10	= B12				
А	= H08	= H10	= H12				
В	= R08	= R10	= R12				
A and B	= N08	= N10	= N12				
T 2)	= X08	= X10	= X12				

Seal material (observe compatibility of seals with hydraulic fluid used, see page 8)

09	NBR seals (standard with version "WN" and "WP")	М
	FKM seals	V


Pilot oil port


FILU	of port	
10	Whitworth pipe thread G1/4	-
	UNF thread 7/16" - 20 UNF (only versions "WN" and "WP")	/12
11	Further details in the plain text	

When the admissible valve performance limits are exceeded, installation of throttle inserts is to be intended (performance limits see page 10).

When throttle inserts are used in channel T, the pressure in the working ports and in case of connection to the tank chambers must not exceed 210 bar.

Symbols

1) Example:

- Symbol E with spool position "a": ordering code .. **EA**..
- Symbol E with switching position "b": ordering code ..**EB**..
- 2) Flow cross-section see page 7

M Notice:

Representation according to DIN ISO 1219-1. Hydraulic interim positions are shown by dashes.

Types of actuation: Type WMM

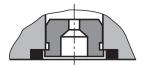
	Ordering code		Type of actuation
Symbol	Actuating side	Detent	Hand lever
A.C.D.		/F	A B 2) P T
A, C, D			A B D D D D D D D D D D D D D D D D D D
В, Ү		/F	A B 3) P T
в, т			A B a b 3)
	"a" ¹) = .A	/F	A B 2) P T
	a		A B a O W 2)
E, F, G, H, J, J73, L, M,	"b" 1) = . B	/F	A B 0 b 1 3)
P, Q, R, T, U, V, W	b ./ = .B		A B 0 b 3)
		/F	A B 4) A D D 1 P T
			A B 4) A D D W 4)

¹⁾ See symbols page 3

²⁾ See pos. 2, page 12

³⁾ See pos. 1, page 12

⁴⁾ See pos. 3, page 12


Types of actuation: WN and WP

	Ordering code		Type of actuation		
Symbol	Symbol Actuating side Detent		fluidic		
			a a b W P T		
A, C, D		/0	A B b b		
		/OF	a A B b b P T		
В, Ү			A B b b b		
	"a" ¹⁾ = .A		A B A B A B A B A B A B A B A B A B A B		
E, G, H, J, L, U	"b" 1) = .B		A B b b		
			A B W b W b C C C C C C C C C		

¹⁾ See symbols page 3

Function, section

Valves of type WMM are manually control spool (3), and one or two return springs (4). actuated directional spool valves, When de-energized, the control spool (3) is held in the valves of type WN and WP are fluidically central position or in the initial position by the return actuated directional spool valves. springs (4) (except for version "O"). They control the start, stop and The control spool (3) is moved to the desired spool direction of a flow. position by means of the types of actuation. The directional valves basically consist of housing (1), one type of actuation (2.1) (hand lever) or two types of actuation (2.2) (hydraulic, pneumatic actuation cylinder), 2.1 4 Type 4WMM 10 D5X/F/... (with detent) TA Α В **TB** Type 4WMM 10 E5X/... 2.2 4 2.2 3 Type 4WN 10 D5X/OF...

TB

P B

Throttle insert

The use of a throttle insert is required when, due to prevailing operating conditions, flows occur during the switching processes which exceed the performance limit of the valve.

Type 4WN 10 E5X/...

TA

Technical data

(For applications outside these values, please consult us!)

General						
Туре			WN	WP	WMM	
Weight	▶ 1 actuation cylinder	kg	3.4	2.9	3.6	
	▶ 2 actuation cylinders	kg	4.8	3.7	3.6	
Actuating force	► With detent "F"	N	-	_	30 40	
	► With spring return	N	-	_	18 20	
Installation position	1		any			
Ambient temperature range		°C	C -20 +70 (NBR seals) -15 +70 (FKM seals)			
Storage temperature range °C		°C	C -20 +50			
MTTF _d values accor	ding to EN ISO 13849	Years	150 (for further detai	ls see data sheet 08	012)	

Hydraulic					
Maximum operating pressure	▶ Ports A, B, P	bar	350		
	▶ Port T	bar	210		
			With symbols A or B, port T must be used as leakage oil		
				onnection if the operating pressure exceeds the adn	
			tank pressure.	1	1
Pilot pressure 1)		bar	1,5 10	8 160	-
Maximum flow		l/min	160		
Flow cross-section	► Symbol Q	$\mathrm{mm^2}$	11 (A/B → T); 10.3 (P → A/B)		
(spool position 0)	► Symbol V	mm ²	2.5 (A/B → T)		
	► Symbol W	mm ²	5.5 (A/B → T)		
Pilot volume		cm ³	23.7	6.9	_
Hydraulic fluid			see table page 8		
Hydraulic fluid temperature rar	nge	°C	-20 +80 (NBR seals)		
(at the valve working ports)			-15 +80 (FKM seals)		
Viscosity range		mm²/s	2.8 500		
Maximum admissible degree of contamination of the		Class 20/18/15 ²⁾			
hydraulic fluid, cleanliness class	ss according to ISO 4406 (c)				
Switching time	► ON	ms	10 35	10 25	15 30
	▶ OFF	ms	20 45	10 25	15 30

¹⁾ The information given only applies if the actuation pressure is applied directly to the valve.

For the selection of filters, see www.boschrexroth.com/filter.

²⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and simultaneously increases the life cycle of the components.

Technical data

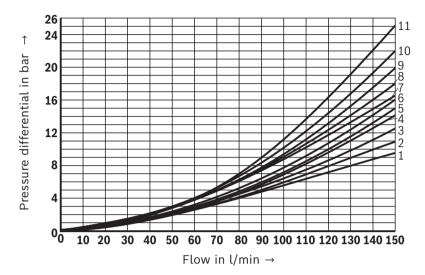
(For applications outside these values, please consult us!)

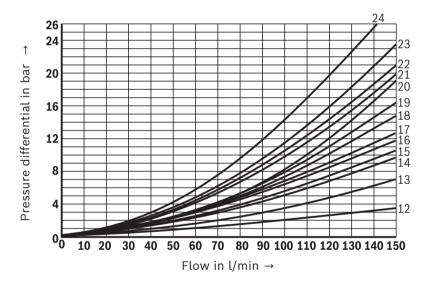
Hydraulic fluid		Classification	Suitable sealing materials	Standards	Data sheet
Mineral oils	'	HL, HLP, HLPD, HVLP, HVLPD	NBR, FKM	DIN 51524	90220
Bio-degradable	► Insoluble in water	HETG	FKM	ISO 15380	
		HEES	FKM	150 15380	90221
	► Soluble in water	HEPG	FKM	ISO 15380	
Flame-resistant	► Water-free	HFDU (glycol base)	FKM		
		HFDU (ester base)	FKM	ISO 12922	90222
		HFDR	FKM		
	► Containing water	HFC (Fuchs: Hydrotherm 46M, Renosafe 500; Petrofer: Ultra Safe 620; Houghton: Safe 620; Union: Carbide HP5046)	NBR	ISO 12922	90223

Important information on hydraulic fluids:

- ► For further information and data on the use of other hydraulic fluids, please refer to the data sheets above or contact us.
- ► There may be limitations regarding the technical valve data (temperature, pressure range, life cycle, maintenance intervals, etc.).
- ► The ignition temperature of the hydraulic fluid used must be 50 K higher than the maximum surface temperature.
- ▶ Bio-degradable and flame-resistant containing water:

 If components with galvanic zinc coating (e.g. version "J3" or "J5") or parts containing zinc are used, small amounts of dissolved zinc may get into the hydraulic system and cause accelerated aging of the hydraulic fluid. Zinc soap may form as a chemical reaction product, which may clog filters, nozzles and solenoid valves particularly in connection with local heat input.


► Flame-resistant - containing water:


- Due to the increased cavitation tendency with HFC hydraulic fluids, the life cycle of the component may be reduced by up to 30% as compared to the use with mineral oil HLP. In order to reduce the cavitation effect, it is recommended if possible specific to the installation backing up the return flow pressure in ports T to approx. 20% of the pressure differential at the component.
- Dependent on the hydraulic fluid used, the maximum ambient and hydraulic fluid temperature must not exceed 50 °C.
 In order to reduce the heat input into the component, a maximum duty cycle of 50% in continuous operation has to be set for on/off valves (measuring time 300 s). If this is impossible due to the function, an energy-reducing control of these components is recommended, e.g. via a PWM plug-in amplifier.

Characteristic curves

(measured with HLP46, ϑ_{oil} = 40 ±5 °C)

Δp-q_V characteristic curves

	Direction of flow			
Symbol	P – A	P - B	A - T	B - T
A; B	6	6	_	_
С	1	2	5	7
D	2	2	5	7
E	17	16	19	21
F	2	3	22	23
G	4	4	24	24
Н	14	14	20	21
J	3	3	9	11
J73	22	21	23	24
L	3	3	9	9
М	14	14	6	8
Р	17	14	20	23
Q	16	17	4	8
R	18	21	18	24
T	18	4	10	24
U	3	3	6	11
V	17	17	18	20
W, Y	upon request			

Central position:

	Direction of flow				
Symbol	P – A	P - B	B - T	A - T	P – T
Н	12	12	13	13	15

Performance limits

(measured with HLP46, ϑ_{oil} = 40 ±5 °C)

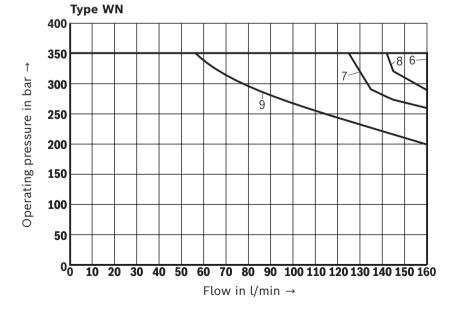

Motice:

The specified performance limits are valid for operation with two directions of flow (e.g. from P to A and simultaneous return flow from B to T).

Due to the flow forces acting within the valves, the achievable performance limit may be considerably lower

with only one direction of flow (e.g. from P to A while port B is blocked)!

In such cases of use, please consult us.



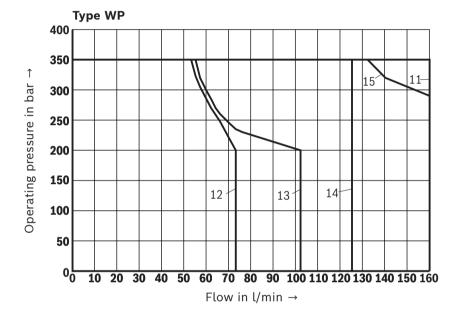
With spring return "-"

Characteristic curve	Symbol
1	C, D, E, J, J73, L, M, Q, U, V, W
2	Н
3	T, G

With detent "F"

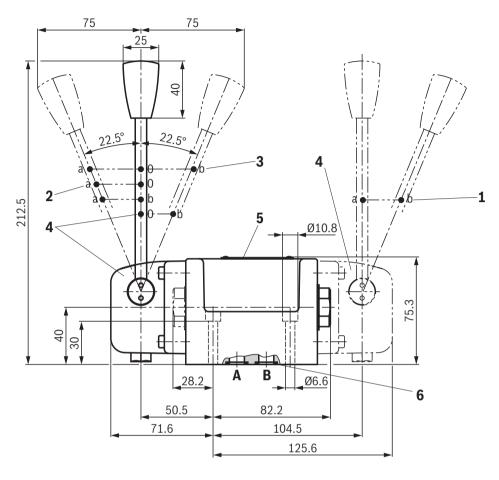
Characteristic curve	Symbol	
4	C, D, E, J, J73, L, M, Q,	
	U	
5	T, G, H	

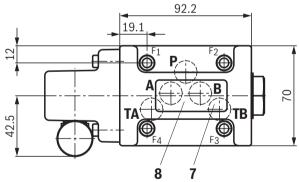
Characteristic curve	Symbol
6	C, C/OF, D, D/OF, E, J, L, M, U
7	G
8	Н
9	A, B

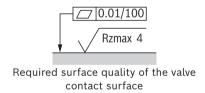

Performance limits

(measured with HLP46, ϑ_{oil} = 40 ±5 °C)

Motice:

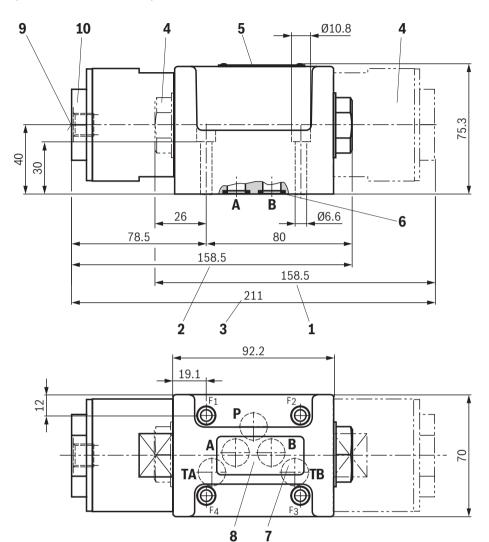

The specified performance limits are valid for operation with two directions of flow (e.g. from P to A and simultaneous return flow from B to T).

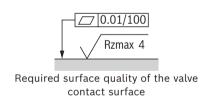

Due to the flow forces acting within the valves, the achievable performance limit may be considerably lower with only one direction of flow (e.g. from P to A while port B is blocked)!
In such cases of use, please consult us.



Characteristic	Symbol	
curve		
11	C, C/OF, D, D/OF, E, J,	
	L, M, U	
12	В	
13	A	
14	G	
15	Н	

Dimensions: Type WMM (dimensions in mm)

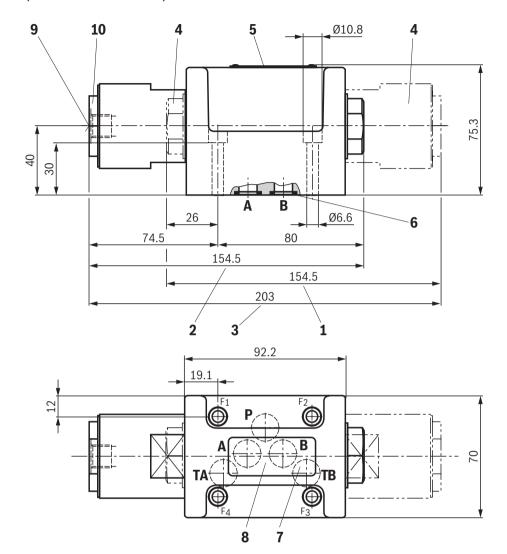

- 1 Valves with 2 switching positions, symbol B and .B
- 2 Valves with 2 switching positions, symbol A, C, D .A
- **3** Valves with 3 switching positions
- 4 Cover and hand lever
- 5 Name plate
- 6 Identical seal rings for port A, B, P, TA, TB
- 7 Additional port TB can optionally be used
- 8 Porting pattern according to ISO 4401-05-04-0-05

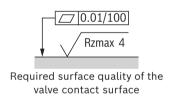

Notices:

- ▶ Deviating from ISO 4401, port T is called TA and port T1 is called TB in this data sheet.
- ► For valves with 2 switching positions and symbols B and Y, the hand lever is installed on valve side B.
- ► The dimensions are nominal dimensions which are subject to tolerances.

Valve mounting screws and subplates, see page 15.

Dimensions: Type WN (dimensions in mm)


- 1 Valves with 2 switching positions, symbol B and .B
- 2 Valves with 2 switching positions, symbol A, C, D .A
- 3 Valves with 3 switching positions
- 4 Cover and plug screw
- 5 Name plate
- 6 Identical seal rings for port A, B, P, TA, TB
- 7 Additional port TB can optionally be used
- 8 Porting pattern according to ISO 4401-05-04-0-05
- 9 Pilot oil port G1/4 (version "-")
 Pilot oil port 7/16" 20 UNF (version "/12")
- 10 Socket


Notices:

- ▶ Deviating from ISO 4401, port T is called TA and port T1 is called TB in this data sheet.
- ► The dimensions are nominal dimensions which are subject to tolerances.
- ▶ When screwing in/releasing the connection tube on the pilot oil port (9), the bushing (10) must be secured against twisting by using an open-end wrench.

Valve mounting screws and subplates, see page 15.

Dimensions: Type WP (dimensions in mm)

- 1 Valves with 2 switching positions, symbol B and .B
- 2 Valves with 2 switching positions, symbol A, C, D, EA...
- 3 Valves with 3 switching positions
- **4** Cover and plug screw for valves with 2 switching positions, symbol B, Y, EB...
- 5 Name plate
- 6 Identical seal rings for port A, B, P, TA, TB
- 7 Additional port TB can optionally be used
- 8 Porting pattern according to ISO 4401-05-04-0-05
- 9 Metric pilot oil port: G1/4 UNC pilot oil port: 7/16" - 20 UNF
- 10 Socket

Motices:

- ▶ Deviating from ISO 4401, port T is called TA and port T1 is called TB in this data sheet.
- ► The dimensions are nominal dimensions which are subject to tolerances.
- ▶ When screwing in/releasing the connection tube on the pilot oil port (9), the bushing (10) must be secured against twisting by using an open-end wrench.

Valve mounting screws and subplates, see page 15.

Dimensions

Valve mounting screws (separate order)

Size	Quantity	Hexagon socket head cap screws	Material number
10	4	ISO 4762 - M6 x 40 - 10.9-flZn-240h-L	R913000058
		Friction coefficient μ_{total} = 0.09 0.14; tightening torque M_A = 12.5 Nm ±10%	
or			
	4	ISO 4762 - M6 x 40 - 10.9	Not included in the Rexroth
		Friction coefficient μ_{total} = 0.12 0.17; tightening torque M_A = 15.5 Nm ±10%	delivery range
	or		
	4	1/4-20 UNC x 1-1/2" ASTM-A574	R978800710
		Friction coefficient μ_{total} = 0.19 to 0.24; tightening torque M_A = 25 Nm ±15%	
		Friction coefficient μ_{total} = 0.12 to 0.17; tightening torque M_A = 19 Nm ±10%	

Notice:

In case of different friction coefficients, the tightening torques are to be adjusted accordingly.

Subplates (separate order) with porting pattern according to ISO 4401, see data sheet 45100.

Further information

•	Subplates	Data sheet 45100
•	Hydraulic fluids on mineral oil basis	Data sheet 90220
•	Environmentally compatible hydraulic fluids	Data sheet 90221
•	Flame-resistant, water-free hydraulic fluids	Data sheet 90222
•	Flame-resistant hydraulic fluids - containing water (HFAE, HFAS, HFB, HFC)	Data sheet 90223
•	Reliability characteristics according to EN ISO 13849	Data sheet 08012
•	Hydraulic valves for industrial applications	Operating instructions 07600-B
•	Selection of filters	www.boschrexroth.com/filter
•	Information on available spare parts	www.boschrexroth.com/spc

Notices

Bosch Rexroth AG Industrial Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52/40 30 20 my.support@boschrexroth.de www.boschrexroth.de © All rights reserved to Bosch Rexroth AG, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.

It must be remembered that our products are subject to a natural process of wear and aging.