

Axial piston variable motor A6VM series 71

Americas

Features

- Variable motor with axial tapered piston rotary group of bent-axis design, for hydrostatic drives in open and closed circuit
- For use in mobile and stationary applications
- The wide control range enables the variable motor to satisfy the requirement for high speed and high torque.
- The displacement can be infinitely varied from V_{g max} to V_{g min} = 0.
- The output speed is dependent on the flow of the pump and the displacement of the motor.
- The output torque increases with the pressure differential between the high and low-pressure side and with increasing displacement.
- Wide control range with hydrostatic transmissions
- Wide selection of control devices
- Cost savings through elimination of gear shifts and possibility of using smaller pumps
- Compact, robust motor with long service life
- High power density
- ► Good starting efficiency
- Version with 9-piston rotary group
- Good low speed characteristics
- ► High uniformity

RE-A 91610

Edition: 12.2015 Replaces: 04.2013

- ▶ Sizes 60 to 215
- Nominal pressure 6500 psi (450 bar)
- Maximum pressure 7250 psi (500 bar)
- Open and closed circuits

Contents

Type code	2
Hydraulic fluids	5
Flow direction	6
Shaft seal	6
Operating pressure range	7
Technical data	8
HP – Proportional hydraulic control	10
EP – Proportional electric control	13
HZ – Two-point hydraulic control	15
EZ – Two-point electric control	16
HA – Automatic high-pressure related control	17
DA – Automatic speed-related control	22
Electric travel direction valve (for DA, HA.R)	24
Dimensions size 60	25
Dimensions size 85	31
Dimensions size 85	32
Dimensions size 115	38
Dimensions size 150	44
Dimensions size 170	50
Dimensions size 215	56
Connector for solenoids	62
Flushing and boost pressure valve	63
Counterbalance valve BVD and BVE	65
Speed sensor	69
Setting range for displacement	70
Installation instructions	72
Project planning notes	74
Safety instructions	75

2 **A6VM series 71** | Axial piston variable motor Type code

Type code

	6V M					0	0				/		71	Α	N I	<u> </u>	V	0						
cial	piston unit																							
)1	Bent-axis c ating mode	lesign, va	riable	e, nor	minal	pressi	ire 65	500	psi	(450	bar)), ma	aximu	m pr	essı	ure 7	7250	osi (50) bar)					A6
02	Motor																							M
ze ((NG)																							
)3	Geometric	displace	ment	, see	techn	ical da	ata or	n pa	ge 8	3			in c	m ³ /re	ev		060	085	115	1	50	170	215	1
													in i	n ³ /rev	/	:	3.66	5.19	7.0	2 9.	15	10.37	13.12	1
ontr	rol device																060	085	115	. 1	50	170	215	,
)4	Proportion	al contro	,	posi	itive c	ontrol			4	$p_{St} =$	145	5 psi	(10	oar)			•	•	•		•	•	•	НЕ
	hydraulic									$p_{st} =$							•	•	•		•	•	•	HF
				nega	ative o	ontro				$\Delta p_{\rm St} =$						+	•	•	•		•	•	•	HP
				0					_	$p_{St} =$						+	•	•	•		•	•	•	HF
	Proportion	al contro	ol –	posi	itive c	ontrol				J = 12			-				•	•	•		•	•	•	EP
	electrical								l	J = 24	1 V C	C					•	•	•		•	•	•	EF
				nega	ative o	ontro			l	J = 12	2 V C	DC					•	•	•		•	•	•	EF
									l	J = 24	1 V C	C					•	•	•		•	•	•	EF
	Two-point	control		nega	ative o	ontro											-	-	-		•	•	•	HZ
	hydraulic																•	•	•	· ·	-	-	-	HZ
	Two-point	Two-point control negative control electrical				l	J = 12	2 V C	C					-	-	-		•	•	•	EZ			
	electrical			ι	J = 24	1 V C	C					-	-	-			•	•	EZ					
									ι	J = 12	2 V C	C					•	•	•		-	-	-	EZ
									ι	J = 24	1 V C	C					•	•	•		-	-	-	EZ
	Automatic high-press		ed,	with incre		num p	ressu	re	Z	Ap ≤ a	ppro	ox. 1	.45 p	si (10	bar	.)	•	•	•			•	•	н
	Positive co	ntrol		with	pres	sure ir	creas	se	Z	hp = 1	.450) psi	(100	bar)			•	•	•		•	•	•	HA
	Automatic	control		hydı	r. trav	el dire	ction	val	/e								•	•	•		•	•	•	D/
	speed relation			elec	tric tr	avel d	irecti	on	l	J = 12	2 V C	С					•	•	•		•	•	•	D/
	control p _{St}	/ p _{HD} = 5	/100	valv circi		ectric	$V_{g max}$:	ι	J = 24	4 V C	C					•	•	•		•	•	•	D/
ress	ure control	/override	e														060	085	115	1	50	170	215	
)5	Without pr	essure co	ontrol	/ovei	rride											Τ	•	•	•		•	•	•	0
	Pressure c	ontrol fix	ed se	tting,	, only	for HF	5, HF	°6, I	EP5	and I	EP6						•	•	•		•	•	•	D
	Override			hydı	raulic	remot	e con	trol	, pr	oport	iona	al				\top	•	•	•	-	•	•	•	Т
	of controls			elec	tric, t	wo-po	int		ι	J = 12	2 V C	C					•	•	•		•	•	•	U
	HA1 and H	A2							ι	J = 24	1 V C	C				1	•	•	•		•	•	•	U
				elec	tric a	nd trav	/el		ι	J = 12	2 V C	C				1	•	•	•			•	•	R
				dire	ction	valve,	elect	ric	ι	J = 24	1 V C	C					•	•	•			•	•	R
onn	ector for so	lenoids) (see	page	e 62)														•					
)6	Without co			· -		d, onl	y for	hyd	raul	ic cor	ntrol)											-	
-	DEUTSCH											-												F

1) Connectors for other electric components can deviate.

21 ٦

<u>11 12 13 14 15 16 17 18 19 20</u>

	51	02	03	04	05	1 06		07	08	05	<u> </u>		-		1		13	1		15	10	1/	18	19	20	
A	6V	Μ						0	0				/	71	4	1	W	V	'	0						-
Addit	ional f	unctio	on 1																							
07	Witho	ut ad	dition	al fun	ction																					0
Addit	tional f	unctio	on 2																							
08	Witho	ut ad	dition	al fun	ction	1																				0
Resn	onse ti	me da	amnin	σ (for	مامد	tion	500	cont	rol)																	_
09	Witho			-																						0
	Damp			(and	EP5,	6D.,	HZ,	EZ, H	A wit	:h c	ount	erba	lan	ce valv	e BVI	D/BVE	Ξ			1
		0							n inle													-				4
									n outl									4)								7
Satti	ng rang	o for	displ	acom	ant ²⁾																					
10	V _{g max}					Va		settin	g scre	-w								0	50	085	1	15	150	170	215	
	Witho								ustab										•	•		•	•	•	•	Α
			U				diu												•	•		•	•	•	•	В
						lon	g												•	•		•	•	•	•	С
						ext	ra long									1	-	•		•	•	•	•	D		
	Short					sho	ort	(0-adj	ustab	le)										•		•	•	•	•	E
						me	edium										•		•	•	•	•	F			
						lon	g													•		•	٠	•	•	G
						ext	ra l	ong											-	•		•	•	•	•	н
	Mediu	ım				sho	ort	(0-adj	ustab	le)										•		•	•	•	•	J
						me	diu	m												•		•	٠	•	•	к
						lon	g													•		•	•	•	•	L
						ext	ra I	ong											-	•		•	•	•	•	м
Serie	s																									
11	Series	s 7, in	dex 1																							71
Confi	guratio	on of	ports	and f	asteni	ng th	rea	ds																		
12	ANSI,								ording	g to	ISO	1192	26													Α
Direc	tion of	rotat	tion																							
13	Viewe			shaft,	bidire	ction	al																			w
Seali	ng mat			,																						_
J 4	FKM (elaste	omer)																						V
																										•
15	shaft Stand		-	,																						0
				•														~		005		15	150	170	045	
Mour 16	sae J	-				12	7-1											1	50	085		15 -	150 _	170	215	C4
10	JAE J	144				12												-	•	•		-	-	-	-	C4 C2
						152												-		-	-	•	•	•	-	D4
						165												-	-	-	-	_	-	-	•	E4
						100	54																-		-	

• = Available = On request - = Not available

01

02

03

04

05

06 07 08

09

10

²⁾ The settings for the setting screws can be found in the table (see pages 70 and 71).

4 **A6VM series 71** | Axial piston variable motor Type code

	01	02	03	04	05	06	07	08	09	10		11	12	13	14		6 17	18	19	20	21
4	6V	М					0	0			1	71	Α	W	V	0				-	
rive	shaft														060	085	115	150	170	215	
17	Splin	ed sha	ıft			1 1/4	4 in 14	T 12/2	24 DP						•	-	-	-	-	-	S7
	ANSI	B92.1	a			1 1/2	2 in 17	T 12/2	24 DP						-	•	-	-	-		S9
						1 3/4	4 in 13	T 8/16	5 DP						-	-	•	•	-	-	T1
						2 in	15T 8/	16 DP							-	-	-	0	•	•	T2
ort	plate f	or wo	rking	ports											060	085	115	150	170	215	
18	Î.			ts A ar	nd B at	rear									•	•	•	•	•	•	1
	SAE \	workin	g port	ts A ar	nd B at	side,	oppos	ite							•	•	•	•	•	•	2
	Port	plate v	vith 1	-stage	press	ure lim	nitation	ı	BVI	D20					•	•	•	-	-	-	7
	valve	s for m	nounti	ng a c	ounter	balan	ce valv	e ³⁾	BVI	D25, B	VE25				-	-	•	•	•	•	8
alve	see	oages	63 to	68)											060	085	115	150	170	215	
19	Witho	out val	ve												•	•	•	•	•	•	0
	With	With counterbalance valve BVD/BVE mounted ⁴⁾												•	•	•	•	•	•	w	
	With flushing and boost pressure valve, mounted Flushing flow q_v [gpm (l/m										n (l/m	in)]									
	Flushing on both sides						0.9 (3.5)						•	•	•	-	-	-	Α		
		ing flo		65 psi	(25 h	ur) and	4		1.3 (5)					•	•	•	-	-	-	В	
						an) and	4		2.1	(8	3)				•	•	•	•	•	•	С
	(p _{ND} =	= low p	ressu	ire, $p_{\rm G}$	= case	e pres	sure)		2.6	(1	.0)				•	•	•	•	•	•	D
	Only	possib	le wit	th port	t plate	s 1 an	d 2		3.7	(1	4)				•	•	•	-	-	-	F
									4.0	(1	5)				-	-	• ⁵⁾	•	•	•	G
									4.8	(1	8)				-	-	• ⁵⁾	•	•	•	I
									5.5	(2	21)				-	-	• ⁵⁾	•	•	•	J
									7.1	(2	27)				-	-	• ⁵⁾	•	•	•	к
									8.2	(3	31)				-	-	• ⁵⁾	•	•	•	L
									9.7	(3	37)				-	-	-	•	•	•	м
pee	d sens	or (se	e pag	e 69)											060	085	115	150	170	215	
20	Witho	out spe	eed se	ensor											٠	•	•	•	•	•	0
	Prepa	ared fo	or spe	ed sen	isor D	SM/DS	SA								•	•	•	•	•	•	U
	With	speed	senso	or DSN	//DSA	moun	ted ⁶⁾								•	•	•	•	•	•	V
tan	dard /	specia	l vers	sion																	
21	Stand	dard ve	ersion																		0
	Stand	dard ve	ersion	with i	nstalla	ation v	ariants	s, e. g.	T por	ts aga	inst s	tandar	d oper	n and	closed						Y
	1																				

Special version

• = Available \circ = On request - = Not available

Notes

- Note the project planning notes on page 74.
- When ordering, please provide the relevant technical data additionally to the type code
- 3) Only possible in conjunction with HP, EP and HA control. Note the restrictions described on page 65.
- 4) State ordering code for counterbalance valve separately in accordance with data sheet 95522 for BVD or 95525 for BVE. Note the restrictions described on page 65.

5) Not for EZ7, EZ8 and HZ7.

6) State ordering code for sensor separately in accordance with data sheet 95132 for DSM or 95133 for DSA and note the requirements relating to the electronics.

s

Hydraulic fluids

The variable motor A6VM is designed for operation with mineral oil HLP according to DIN 51524.

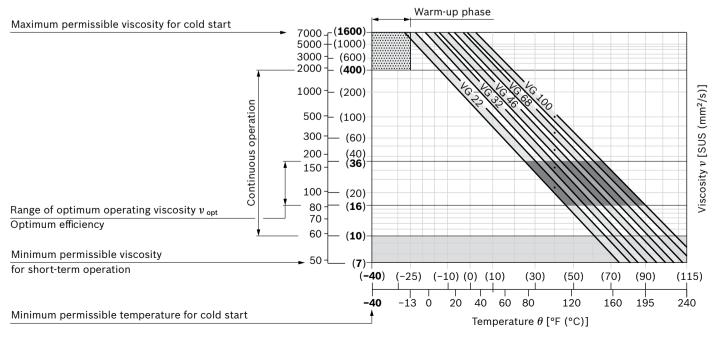
Application instructions and requirements for hydraulic fluids should be taken from the following data sheets before the start of project planning:

- 90220: Hydraulic fluids based on mineral oils and related hydrocarbons
- ▶ 90221: Environmentally acceptable hydraulic fluids
- 90222: Fire-resistant, water-free hydraulic fluids (HFDR/HFDU)
- 90223: Fire-resistan, water-containing hydraulic fluids (HFAE, HFAS, HFB, HFC)

Details regarding the selection of hydraulic fluid

The hydraulic fluid should be selected such that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} see selection diagram).

Note


At no point of the component may the temperature be higher than 240 °F (115 °C). The temperature difference specified in the table is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend flushing the case at port **U** or using a flushing and boost pressure valve (see page 63).

Viscosity and	temperature o	f hydraulic fluids
---------------	---------------	--------------------

	Visco	sity	Tem	perature	Comment
Cold start	v_{\max} s	≤ 7400 SUS (1600 mm²/s)	θ _{St} ≥	-40 °F (-40 °C)	$t \le 3 \min, n \le 1000 \text{ rpm}$, without load $p \le 725 \text{ psi} (p \le 50 \text{ bar})$
Permissible te	empera	ture difference	$\Delta T \leq$	45 °F (25 K)	between axial piston unit and hydraulic fluid in the system
Warm-up phase	v <	7400 to 1850 SUS (1600 to 400 mm ² /s)	θ =	-40 °F to -13 °F (-40 °C to -25 °C)	at $p \le 0.7 \times p_{\text{nom}}$, $n \le 0.5 \times n_{\text{nom}}$ and $t \le 15$ min
Continuous operation	ν=	1850 to 47 SUS (400 to 10 mm²/s)			This corresponds, for example on the VG 46, to a temperature range of +41 °F to + 185 °F (+5 °C to +85 °C)(see selection diagram)
			θ =	-13 °F to +217 °F (-25 °C to +103 °C)	measured at port T Note the permissible temperature range of the shaft seal (ΔT = approx. 22 °F (12 K) between the bearing/shaft seal and port T)
	$v_{opt} =$	167 to 81 SUS (36 to 16 mm²/s)			Range of optimum operating viscosity and efficiency
Short-term operation	v _{min} ≥	2 49 SUS (7 mm²/s)			$t < 3 \min, p < 0.3 \times p_{nom}$

Selection diagram

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406.

At very high hydraulic fluid temperatures (195 °F (90 °C) to maximum 217 °F (103 °C), measured at port **T**), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

Influence of case pressure on beginning of control

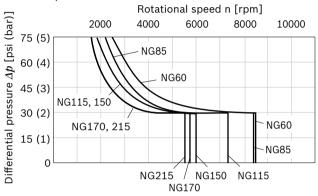
An increase in case pressure affects the beginning of control when using the following control options:

- ► HP, HA.T3: Increase
- DA: Decrease

With the following settings, an increase in case pressure will have no effect on the beginning of control: HA.R and HA.U, EP, HA

The factory setting of the beginning of control is made at $p_{\rm abs}$ = 30 psi (2 bar) case pressure.

Flow direction

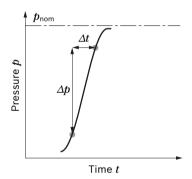

Direction of rotation, viewed on drive shaft										
clockwise (cw)	counter-clockwise (ccw)									
A to B B to A										

Shaft seal

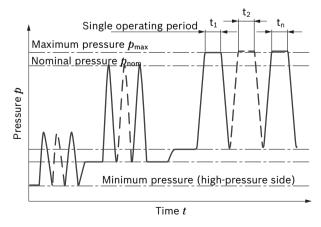
Permissible pressure loading

The service life of the shaft seal will be influenced by the speed of the axial piston unit and the leakage pressure in the housing (case pressure). Momentary pressure spikes (t < 0.1 s) of up to 145 psi (10 bar) are permitted. The service life of the shaft seal decreases with increasing frequency of pressure spikes and increasing mean differential pressure.

The case pressure must be equal to or higher than the ambient pressure.

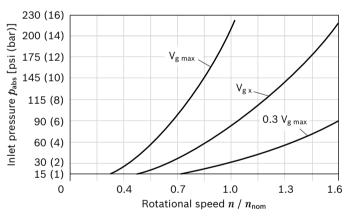

The FKM shaft seal may be used for leakage temperatures from -13 °F to +240 °F (-25 °C to +115 °C). For application cases below -13 °F (-25 °C), an NBR shaft seal is required (permissible temperature range:

-40 °F to +195 °F (-40 °C to +90 °C)).


Operating pressure range

Pressure at working port A or B		Definition
Nominal pressure p_{nom}	6500 psi (450 bar)	The nominal pressure corresponds to the maximum design pressure.
Maximum pressure p_{max}	7250 psi (500 bar)	The maximum pressure corresponds to the maximum operating pres-
Single operating period	10 s	sure within the single operating period. The sum of the single operating
Total operating period	300 h	⁻ periods must not exceed the total operating period.
Minimum pressure (high-pressure side)	365 psi (25 bar)	Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.
Minimum pressure – pump operating mode (inlet)	See the diagram below	To prevent damage to the axial piston motor in pump operating mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at working port (inlet). This minimum pressure is dependent on the speed and displace- ment of the axial piston unit (see characteristic curve)
Summation pressure p_{Su} (pressure A + pressure B)	10150 psi (700 bar)	The summation pressure is the sum of the pressures at both working ports (${\bf A}$ and ${\bf B})$
Rate of pressure change $R_{A max}$		Maximum permissible rate of pressure build-up and reduction during a
With integrated pressure-relief valve	130530 psi/s (9000 bar/s)	pressure change over the entire pressure range.
Without pressure-relief valve	232060 psi/s (16000 bar/s)	-

▼ Rate of pressure change R_{A max}



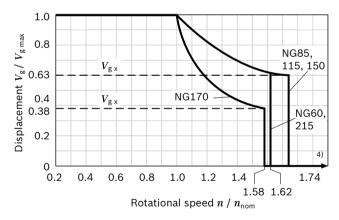
Pressure definition

Total operating period = $t_1 + t_2 + ... + t_n$

Minimum pressure – pump operating mode (inlet)

This diagram is valid only for the optimum viscosity range from v_{opt} = 170 to 73 SUS (36 to 16 mm²/s). Please contact us if these conditions cannot be satisfied.

Note


Operating pressure range valid when using hydraulic fluids based on mineral oils. Values for other hydraulic fluids, please contact us.

8 **A6VM series 71** | Axial piston variable motor Technical data

Technical data

Size		NG		60	85	115	160	170	215
Displacement geometric,		V_{gmax}	in ³	3.78	5.20	7.05	9.28	10.48	13.21
per revolution			cm ³	62.0	85.2	115.6	152.1	171.8	216.5
		V_{gmin}	in ³	0	0	0	0	0	0
			cm ³	0	0	0	0	0	0
		Vgx	in ³	2.26	3.11	4.21	5.55	3.97	5.00
			cm ³	37	51	69	91	65	82
Maximum speed ¹⁾	at $V_{g max}$	$n_{\sf nom}$	rpm	4450	3900	3550	3250	3100	2900
(complying with the maximum	at $V_{g} < V_{gx}$ (see diagram)	n_{\max}	rpm	7200	6800	6150	5600	4900	4800
permissible inlet flow)	at V _{g0}	n_{\max}	rpm	8400	8350	7350	6000	5750	5500
Inlet flow ²⁾	at $n_{\sf nom}$ and $V_{\sf gmax}$	$q_{ m vmax}$	gpm	73	88	108	131	141	166
			l/min	276	332	410	494	533	628
Torque ³⁾	at $V_{g max}$ and	Т	lb-ft	326	448	608	800	903	1139
	∆p = 6500 psi (450 bar)		Nm	444	610	828	1089	1230	1550
Rotary stiffness	$V_{g max}$ to $V_g/2$	C _{min}	lb-ft/rad	10695	16521	27511	32084	38279	51334
			kNm/rad	14500	22400	37300	43500	51900	69600
	$V_{\rm g}/2$ to 0	c_{\min}	lb-ft/rad	33412	49785	76559	91458	115355	144267
	(interpolated)		kNm/rad	45300	67500	103800	124000	156400	195600
Moment of inertia for rotary group		J_{TW}	lb-ft ²	0.1020	0.1709	0.2610	0.4295	0.5055	0.7190
			kgm ²	0.0043	0.0072	0.0110	0.0181	0.0213	0.0303
Maximum angular acceleration		α	rad/s²	21000	17500	15500	11000	11000	10000
Case volume		V	gal	0.21	0.26	0.40	0.45	0.61	0.74
			I	0.8	1.0	1.5	1.7	2.3	2.8
Weight, approx.		m	lbs	62	79	101	134	137	172
			kg	28	36	46	61	62	78

Permissible displacement in relation to speed

Notes

- Theoretical values, without efficiency levels and tolerances; values rounded
- Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, such as speed variation, reduced angular acceleration as a function of the frequency and the permissible angular acceleration at start (lower than the maximum angular acceleration) can be found in data sheet 90261.

Determi	Determining the operating characteristics													
Inlet flow	$\mu = \frac{V_{g} \times n}{231 \times \eta_{v}} [gpm] \left(\frac{V_{g} \times n}{1000 \times \eta_{v}}\right) [l/min]$													
Rotational speed	$= \frac{q_{v} \times 231 \times \eta_{v}}{V_{g}} [rpm] \qquad \left(\frac{q_{v} \times 1000 \times \eta_{v}}{V_{g}}\right) \ [rpm]$													
Torque	$= \frac{V_{g} \times \Delta p \times \eta_{mh}}{24 \times \pi} [lb-ft] \qquad \left(\frac{V_{g} \times \Delta p \times \eta_{mh}}{20 \times \pi}\right) [Nm]$													
Power	$=\frac{2\pi\times T\times n}{33000}=\frac{q_{v}\times\Delta p\times \eta_{t}}{1714} \left[\text{HP}\right] \left(\frac{2\pi\times T\times n}{60000}=\frac{q_{v}\times\Delta p\times \eta_{t}}{600}\right) \left[\text{kW}\right]$													
Key														
V_{g}	Displacement per revolution [in ³ (cm ³⁾]													
Δp	Differential pressure [psi (bar)]													

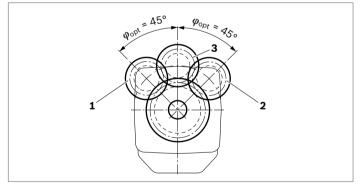
- *n* = Rotational speed [rpm]
- η_v = Volumetric efficiency
- $\eta_{\rm mh}$ = Mechanical-hydraulic efficiency
- η_{t} = Total efficiency ($\eta_{t} = \eta_{v} \bullet \eta_{mh}$)

1) The values are valid:

- For the optimum viscosity range from v_{opt} = 170 to 75 SUS (36 to 16 mm²/s)
- with hydraulic fluid on the basis of mineral oil
- 2) Note inlet flow limitation due to counterbalance valve (see page 65).
- 3) Torque without radial force, With radial force see page 9.
- 4) Values in this range on request

Permissible radial and axial forces of the drive shafts

Size	NG		60	85	115	150	150	170	215
Drive shaft		in	1 1/4	1 1/2	1 3/4	1 3/4	2	2	2
Maximum radial force ¹⁾	$F_{q \max}$	lb	1713	2802	3350	3585	3917	4355	5081
at distance a		N	7620	12463	14902	15948	17424	19370	22602
(from shaft collar)	a	in	0.94	1.06	1.32	1.32	1.32	1.32	1.32
		mm	24.0	27.0	33.5	33.5	33.5	33.5	33.5
Torque maximum at F _{q max}	T _{max}	lb-ft	229	439	611	656	803	679	939
		Nm	310	595	828	890	1089	1230	1445
Differential pressure maximum	Δp_{max}	psi	4550	6400	6500	5350	6500	6500	6100
at V _{g max} and $F_{q max}$		bar	315	440	450	370	450	450	420
Maximum axial force, _+→∏	+ F _{ax max}	lb	0	0	0	0	0	0	0
at standstill or		N	0	0	0	0	0	0	0
pressure-free operation 41-2	- F _{ax max}	lb	112	160	202	232	232	252	281
		N	500	710	900	1030	1030	1120	1250
Permissible axial force per psi (bar)	+ F _{ax perm/bar}	lb/psi	0.12	0.15	0.18	0.21	0.21	0.23	0.26
operating pressure		N/bar	7.5	9.6	11.3	13.3	13.3	15.1	17.0


Effect of radial force F_q on the service life of bearings

By selecting a suitable direction of radial force F_q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

Notes

- The values given are maximum values and do not apply to continuous operation.
- ► The permissible axial force in -F_{ax} direction is to be avoided, because thereby the bearing life is reduced.
- Special requirements apply in the case of belt drives.
 Please contact us.

▼ Toothed gear output drive

- ${\bf 1}$ Direction of rotation "counter-clockwise", pressure at port ${\bf B}$
- 2 Direction of rotation "clockwise", pressure at port A
- ${\bf 3}$ Bidirectional direction of rotation

¹⁾ With intermittent operation

HP – Proportional hydraulic control

The proportional hydraulic control provides infinite adjustment of the displacement. The control is proportional to the pilot pressure applied to port X.

HP1, HP2 positive control

- Beginning of control at V_{g min} (minimum torque, maximum permissible speed at minimum pilot pressure)
- ► End of control at V_{g max} (maximum torque, minimum speed at maximum pilot pressure)

HP5, HP6 negative control

- Beginning of control at V_{g max} (maximum torque, minimum speed at minimum pilot pressure)
- End of control at V_{g min} (minimum torque, maximum permissible speed at maximum pilot pressure)

Note

- ▶ Maximum permissible pilot pressure: *p*_{St} = 1450 psi (100 bar)
- The control oil is internally taken from the high pressure side of the motor (A or B). For reliable control, an operating pressure of at least 435 psi (30 bar) is required in A (B). If a control operation is performed at an operating pressure < 435 psi (30 bar), an auxiliary pressure of at least 435 psi (30 bar) must be applied at port G via an external check valve. For lower pressures, please contact us.

Please note that pressures up to 7250 psi (500 bar) can occur at port **G**.

- Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 145 psi (10 bar).
- The beginning of control and the HP characteristic curve are influenced by the case pressure. An increase in case pressure causes an increase in the beginning of control (see page 6) and thus a parallel displacement of the characteristic.
- A leakage flow of maximum 0.08 gpm (0.3 l/min) can escape at port X due to internal leakage (operating pressure > pilot pressure). The control is to be suitably configured to avoid an independent build-up of pilot pressure.

Response time damping

The response time damping is influencing the stroke characteristics of the motor and thus the reaction speed of the machine.

Standard with Size 60 to 215

HP without damping.

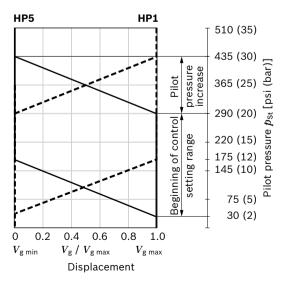
HP.D with throttle pin on both sides, symmetrical (as to table)

Option with Size 60 to 215

HP with throttle pin on both sides, symmetrical (as to table)

Overview Throttle Pins

Size		60	85	115	150	170	215
Groove	[inch]	0.018	0.018	0.022	0.022	0.022	0.026
size	[mm]	0.45	0.45	0.55	0.55	0.55	0.65


HP1, HP5 pilot pressure increase Δp_{St} = 145 psi (10 bar) HP1 positive control

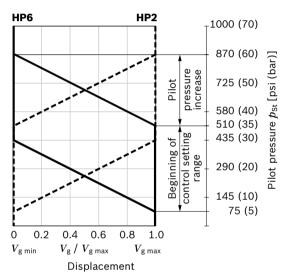
A pilot pressure increase of 145 psi (10 bar) at port **X** results in an increase in displacement from $V_{g min}$ to $V_{g max}$.

HP5 negative control

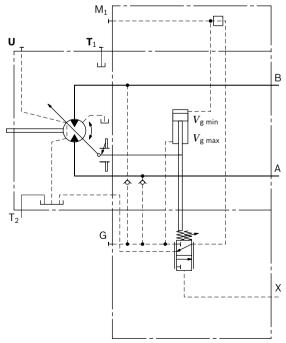
A pilot pressure increase of 145 psi (10 bar) at port **X** results in a decrease in displacement from $V_{\text{g max}}$ to $V_{\text{g min}}$.

- Beginning of control, setting range 30 to 290 psi (2 to 20 bar)
- Standard setting: Beginning of control at 45 psi (3 bar) (end of control at 190 psi (13 bar))
- ▼ Characteristic curve

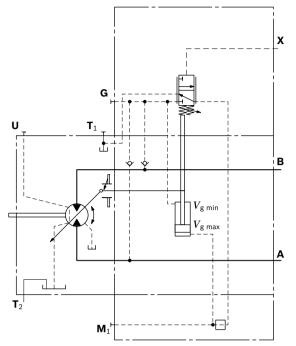
HP2, HP6 pilot pressure increase $\Delta p_{\rm St}$ = 365 psi (25 bar) HP2 positive control


A pilot pressure increase of 365 psi (25 bar) at port **X** results in an increase in displacement from $V_{g min}$ to $V_{g max}$.

HP6 negative control


A pilot pressure increase of 365 psi (25 bar) at port ${\bf X}$ results in a decrease in displacement from $V_{\rm g\ max}$ to $V_{\rm g\ min}.$

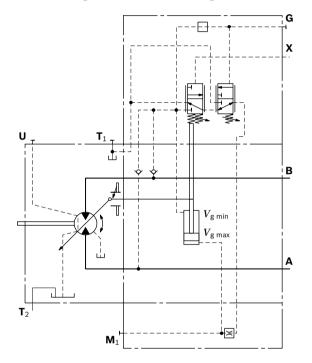
- Beginning of control, setting range 75 to 725 psi (5 to 50 bar)
- Standard setting: Beginning of control at 145 psi (10 bar) (end of control at 510 psi (35 bar))


▼ Characteristic curve

Circuit diagram HP1, HP2 (positive control)

▼ Circuit diagram HP5, HP6 (negative control)

12 **A6VM series 71** | Axial piston variable motor HP – Proportional hydraulic control


HP5D1, HP6D1 Pressure control, fixed setting

The pressure control overrides the HP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint value of the pressure control, the motor will swivel towards a larger displacement.

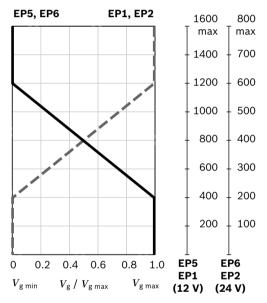
The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve 1150 to 6500 psi (80 to 450 bar)

▼ Circuit diagram HP5D1, HP6D1 (negative control)

EP – Proportional electric control

The proportional electric control provides infinite setting of the displacement. Control is proportional to the electric control current applied to the solenoid.


EP1, EP2 positive control

- Beginning of control at V_{g min} (minimum torque, maximum permissible speed at minimum control current)
- End of control at V_{g max} (maximum torque, minimum speed at maximum control current)

EP5, EP6 negative control

- Beginning of control at V_{g max} (maximum torque, minimum speed at minimum control current)
- ► End of control at V_{g min} (minimum torque, maximum permissible speed at maximum control current)

Characteristic curve

Note

The control oil is internally taken out of the high pressure side of the motor (**A** or **B**). For reliable control, an operating pressure of at least 435 psi (30 bar) is necessary in **A** (**B**). If a control operation is performed at an operating pressure < 435 psi (30 bar), an auxiliary pressure of at least 435 psi (30 bar) must be applied at port **G** using an external check valve. For lower pressures, please contact us.

Please note that pressures up to 7250 psi (500 bar) can occur at port **G**.

Response time damping

The response time damping is influencing the stroke characteristics of the motor and thus the reaction speed of the machine.

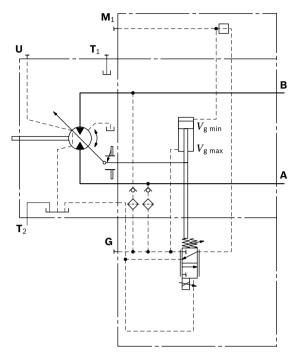
Standard with Size 60 to 215

EP without damping.

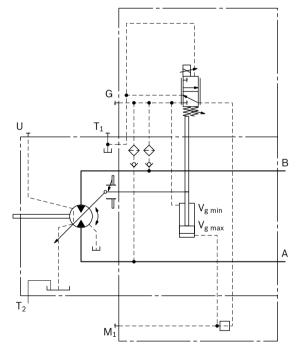
EP.D with throttle pin on both sides, symmetrical (as to table) **Option with Size 60 to 115**

EP with throttle pin on both sides, symmetrical (as to table)

Overview Throttle Pins


Size	1	60	85	115	150	170	215
Groove	[inch]	0.018	0.018	0.022	0.022	0.022	0.026
size	[mm]	0.45	0.45	0.55	0.55	0.55	0.65

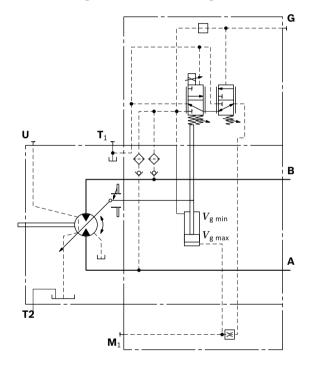
Technical data, solenoid	EP1, EP5	EP2, EP6		
Voltage	12 V (±20 %)	24 V (±20 %)		
Control current				
Beginning of control	400 mA	200 mA		
End of control	1200 mA	600 mA		
Current limit	1.54 A	0.77 A		
Nominal resistance (at 68 °F (20 °C))	5.5 Ω	22.7 Ω		
Dither frequency	100 Hz	100 Hz		
Duty cycle	100 %	100 %		
Type of protection: see connector version on page 62				


Various BODAS controllers with application software and amplifiers are available for controlling the proportional solenoids.

Further information can also be found on the internet at www.boschrexroth.com/mobile-electronics.

- 14 **A6VM series 71** | Axial piston variable motor EP – Proportional electric control
- ▼ Circuit diagram EP1, EP2 (positive control)

▼ Circuit diagram EP5, EP6 (negative control)

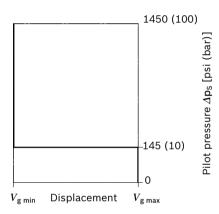

EP5D1, EP6D1 Pressure control, fixed setting

The pressure control overrides the EP control function. If the load torque or a reduction in motor swivel angle causes the system pressure to reach the setpoint value of the pressure control, the motor will swivel towards a larger displacement.

The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.

Setting range of the pressure control valve 1150 to 6500 psi (80 to 450 bar)

▼ Circuit diagram EP5D1, EP6D1 (negative control)



HZ – Two-point hydraulic control

The two-point hydraulic control allows the displacement to be set to either $V_{\rm g\ min}$ or $V_{\rm g\ max}$ by switching the pilot pressure at port **X** on or off.

HZ5, HZ7 negative control

- Position at V_{g max} (without pilot pressure, maximum torque, minimum speed)
- Position at V_{g min} (with pilot pressure > 145 psi (10 bar) activated, minimum torque, maximum permissible speed)
- ▼ Characteristic curve HZ5, HZ7

Note

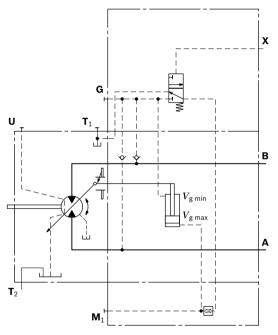
- Maximum permissible pilot pressure: 1450 psi (100 bar)
- The control oil is internally taken out of the high pressure side of the motor (A or B). For reliable control, an operating pressure of at least 435 psi (30 bar) is required in A (B). If a control operation is performed at an operating pressure < 435 psi (30 bar), an auxiliary pressure of at least 435 psi (30 bar) must be applied at port G via an external check valve. For lower pressures, please contact us.</p>

Please note that pressures up to 7250 psi (500 bar) can occur at port ${\bf G}.$

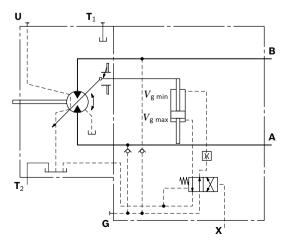
Response time damping

The response time damping is influencing the stroke characteristics of the motor and thus the reaction speed of the machine.

Standard with Size 150 to 215


HZ5 with throttle pin on both sides, symmetrical (as to table) **Standard with Size 60 to 115**

HZ7 (Synchronizing piston) with throttle pin on both sides, symmetrical (as to table)


Overview Throttle Pins

Size		60	85	115	150	170	215
Groove	[inch]	0.012	0.012	0.012	0.022	0.022	0.026
size	[mm]	0.30	0.30	0.30	0.55	0.55	0.65

▼ Circuit diagram HZ5 (negative control) size 150 to 215

▼ Circuit diagram HZ7 (negative control) size 60 to 115

EZ – Two-point electric control

The two-point electric control allows the displacement to be set to either $V_{\rm g\ min}$ or $V_{\rm g\ max}$ by switching the electric current to a switching solenoid on or off.

Note

The control oil is internally taken out of the high pressure side of the motor (**A** or **B**). For reliable control, an operating pressure of at least 435 psi (30 bar) is required in **A** (**B**). If a control operation is performed at an operating pressure < 435 psi (30 bar), an auxiliary pressure of at least 435 psi (30 bar) must be applied at port **G** via an external check valve. For lower pressures, please contact us. Please note that pressures up to 7250 psi (500 bar) can occur at port **G**.

Response time damping

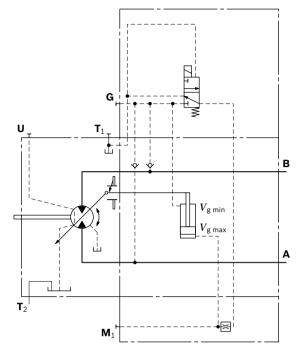
The response time damping is influencing the stroke characteristics of the motor and thus the reaction speed of the machine.

Standard with Size 150 to 215

EZ5, EZ6 with throttle pin on both sides, symmetrical (as to table)

Option with Size 60 to 115

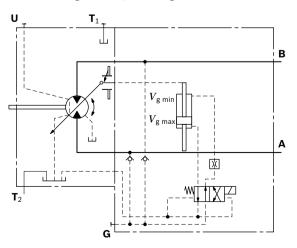
EZ7, EZ8 (Synchronizing piston) with throttle pin on both sides, symmetrical (as to table)


Overview Throttle Pins

Size		60	85	115	150	170	215
Groove	[inch]	0.012	0.012	0.012	0.022	0.022	0.026
size	[mm]	0.30	0.30	0.30	0.55	0.55	0.65

Sizes 150 to 215

Technical data, solenoid with DIA37	EZ5	EZ6		
Voltage	12 V (±20 %)	24 V (±20 %)		
Position $V_{g max}$	de-energized	de-energized		
Position $V_{g min}$	energized	energized		
Nominal resistance (at 68 °F (20 °C))	5.5 Ω	21.7 Ω		
Nominal power	26.2 W	26.5 W		
Minimum required active current	1.32 A	0.67 A		
Duty cycle	100 %	100 %		
Type of protection: see connector version on page 62				


▼ Circuit diagram EZ5, EZ6 (negative control) size 150 to 215

Sizes 60 to 115

Technical data, solenoid with DIA45	EZ7	EZ8		
Voltage	12 V (±20 %)	24 V (±20 %)		
Position $V_{g max}$	de-energized	de-energized		
Position V _{g min}	energized	energized		
Nominal resistance (at 68 °F (20 °C))	4.8 Ω	19.2 Ω		
Nominal power	30 W	30 W		
Minimum required active current	1.5 A	0.75 A		
Duty cycle	100 %	100 %		
Type of protection: see connector version on page 62				

▼ Circuit diagram EZ7, EZ8 (negative control) size 60 to 115

HA – Automatic high-pressure related control

The automatic high-pressure related control adjusts the displacement automatically depending on the operating pressure.

The displacement of the A6VM motor with HA control is $V_{\rm g\ min}$ (maximum speed and minimum torque). The control unit internally measures the operating pressure at **A** or **B** (no control line required) and upon reaching the set beginning of control, the controller swivels the motor from $V_{\rm g\ min}$ to $V_{\rm g\ max}$ with increase of operating pressure. The displacement is modulated between $V_{\rm g\ min}$ and $V_{\rm g\ max}$, thereby depending on load conditions.

HA1, HA2 positive control

- Beginning of control at V_{g min} (minimum torque, maximum speed)
- End of control at V_{g max} (maximum torque, minimum speed)

Note

- ► For safety reasons, winch drives are not permissible with beginning of control at V_{g min} (standard for HA).
- The control oil is internally taken out of the high pressure side of the motor (A or B). For reliable control, an operating pressure of at least 435 psi (30 bar) is required in A (B). If a control operation is performed at an operating pressure < 435 psi (30 bar), an auxiliary pressure of at least 435 psi (30 bar) must be applied at port G via an external check valve. For lower pressures, please contact us.</p>

Please note that pressures up to 7250 psi (500 bar) can occur at port ${f G}$.

The beginning of control and the HA.T3 characteristic curve are influenced by case pressure. An increase in case pressure causes an increase in the beginning of control (see page 6) and thus a parallel shift of the characteristic.

Response time damping

The response time damping is influencing the stroke characteristics of the motor and thus the reaction speed of the machine.

Standard with Size 60 to 215

HA1,2 with one-sided throttle pin, the throttling occurs from $V_{\rm g\,min}$ to $V_{\rm g\,max}$. (as to table)

Overview Throttle Pins

Size		60	85	115	150	170	215
Groove	[inch]	0.018	0.018	0.022	0.022	0.022	0.022
size	[mm]	0.45	0.45	0.55	0.55	0.55	0.65

Standard with Size 60 to 215

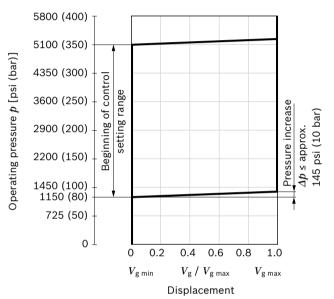
HA1, 2 with one sided throttle pin effects the stroking time of

the motor from Vg min to Vg max. (as to table)

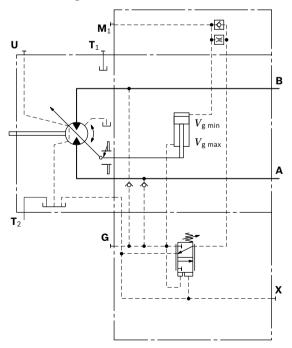
Overview Throttle Screw

Size		60	85	115	150	170	215
Groove	[inch]	0.031	0.031	0.031	0.031	0.031	0.031
size	[mm]	0.80	0.80	0.80	0.80	0.80	0.80

18 **A6VM series 71** | Axial piston variable motor HA – Automatic high-pressure related control


HA1 with minimum pressure increase, positive control

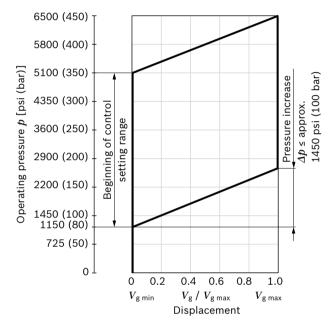
An operating pressure increase of $\Delta p \leq approx$. 145 psi (10 bar) results in an increase in displacement from $V_{\rm g\,min}$ towards $V_{\rm g\,max}$.


Beginning of control, setting range 1150 to 5100 psi (80 to 350 bar)

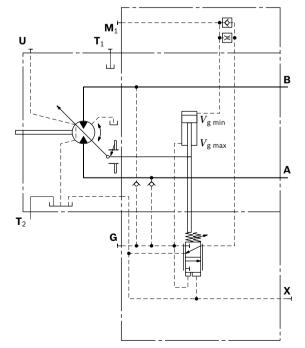
Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 4350 psi (300 bar).

▼ Characteristic curve HA1

Circuit diagram HA1


HA2 with pressure increase, positive control

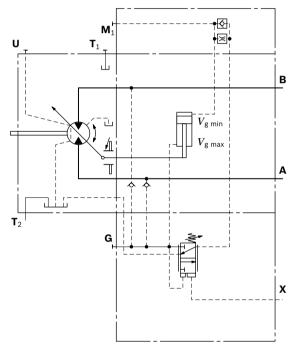
An operating pressure increase of $\Delta p \leq \text{approx. } 1450 \text{ psi}$ (100 bar) results in an increase in displacement from $V_{\text{g min}}$ to $V_{\text{g max}}$.


Beginning of control, setting range 1150 to 5100 psi (80 to 350 bar)

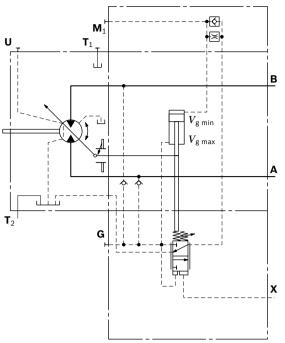
Please state the desired beginning of control in plain text when ordering, e. g.: beginning of control at 2900 psi (200 bar)

▼ Characteristic curve HA2

▼ Circuit diagram HA2


HA.T3 hydraulic override, remote control, proportional With the HA.T3 control, the beginning of control can be influenced by applying a pilot pressure to port **X**. For each 15 psi (1 bar) of pilot pressure increase, the beginning of control is reduced by 250 psi (17 bar).

Beginning of control setting	4350 psi (300 bar)	4350 psi (300 bar)
Pilot pressure at port X	0 psi	145 psi
	0 bar	(10 bar)
Beginning of control at	4350 psi	1900 psi
	(300 bar)	(130 bar)

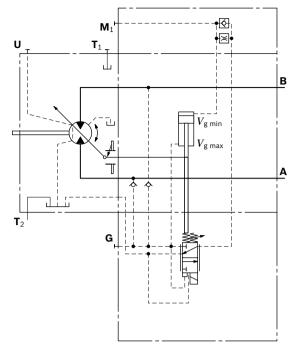

Note

Maximum permissible pilot pressure 1450 psi (100 bar).

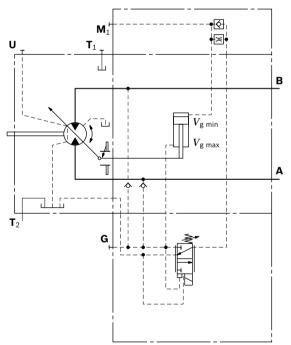
▼ Circuit diagram HA1.T3

Circuit diagram HA2.T3

20 **A6VM series 71** | Axial piston variable motor HA – Automatic high-pressure related control


HA.U1, HA.U2 electric override, two-point

With the HA.U1 or HA.U2 control, the beginning of control can be overridden by an electric signal to a switching solenoid. When the override solenoid is energized, the variable motor swivels to maximum swivel angle, without intermediate position.


The beginning of control can be set between 1150 and 4350 psi (80 and 300 bar) (specify required setting in plain text when ordering).

Technical data, solenoid with DIA45	U1	U2		
Voltage	12 V (±20 %)	24 V (±20 %)		
No override	de-energized	de-energized		
Position V _{g max}	energized	energized		
Nominal resistance (at 68 °F (20 °C))	4.8 Ω	19.2 Ω		
Nominal power	30 W	30 W		
Minimum required active current	1.5 A	0.75 A		
Duty cycle	100 %	100 %		
Type of protection: see connector version on page 62				

▼ Circuit diagram HA2U1, HA2U2

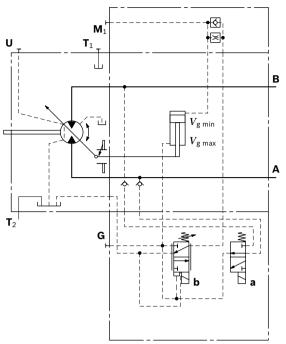
▼ Circuit diagram HA1U1, HA1U2

HA.R1, HA.R2 electric override, electric travel direction valve

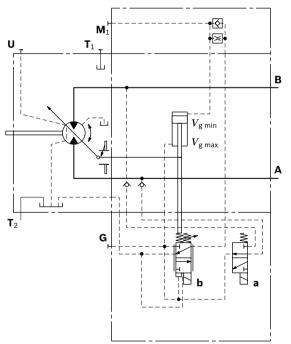
With the HA.R1 or HA.R2 control, the beginning of control can be overridden by an electric signal to switching solenoid **b**. When the override solenoid is energized, the variable motor swivels to maximum swivel angle, without intermediate position.

The travel direction valve ensures that the preselected pressure side of the hydraulic motor (**A** or **B**) is always connected to the HA control, and thus determines the swivel angle, even if the high-pressure side changes (e. g. -travel drive during a downhill operation). This thereby prevents undesired jerky deceleration and/or braking characteristics.

The travel direction valve (see page 24) is either pressure spring or switched by energizing switching solenoid **a**, depending on the direction of rotation (travel direction).


Electric override

Technical data, solenoid b with DIA45	R1	R2		
Voltage	12 V (±20 %)	24 V (±20 %)		
No override	de-energized	de-energized		
Position $V_{g max}$	energized	energized		
Nominal resistance (at 68 °F (20 °C))	4.8 Ω	19.2 Ω		
Nominal power	30 W	30 W		
Minimum required active current	1.5 A	0.75 A		
Duty cycle	100 %	100 %		
Type of protection: see connector version on page 62				


Travel direction valve, electric

Technical data, so	lenoid a with DIA37	R1	R2
Voltage		12 V (±20 %)	24 V (±20 %)
Direction	Operating		
of rotation	pressure in		
ccw	В	energized	energized
CW	Α	de-energized	de-energized
Nominal resistance	e (at 68 °F (20 °C))	5.5 Ω	21.7 Ω
Nominal power		26.2 W	26.5 W
Minimum required	active current	1.32 A	0.67 A
Duty cycle		100 %	100 %
Type of protection	: see connector version	on on page 62	

Circuit diagram HA1R1, HA1R2

▼ Circuit diagram HA2R1, HA2R2

DA – Automatic speed-related control

The variable motor A6VM with automatic speed-related control, type DA, is intended for use in hydrostatic travel drives in combination with the variable pump A4VG with DA control.

A drive-speed-related pilot pressure signal is generated by the A4VG variable pump, and that signal, together with the operating pressure, regulates the swivel angle of the hydraulic motor.

Increasing pump speed, i.e. increasing pilot pressure, causes the motor to swivel to a smaller displacement (lower torque, higher speed), depending on the operating pressure.

If the operating pressure exceeds the pressure setpoint set on the controller, the variable motor swivels to a larger displacement (higher torque, lower speed).

• Pressure ratio $p_{\text{St}}/p_{\text{HD}} = 5/100$

DA closed loop control is only suitable for certain types of drive systems and requires review of the engine and vehicle parameters to ensure that the motor is used correctly and that machine operation is safe and efficient. We recommend that all DA applications be reviewed by a Bosch Rexroth application engineer.

Detailed information is available from our sales organization.

Note

The beginning of control and the DA characteristic curve are influenced by case pressure. An increase in case pressure causes a decrease in the beginning of control (see page 6) and thus a parallel shift of the characteristic.

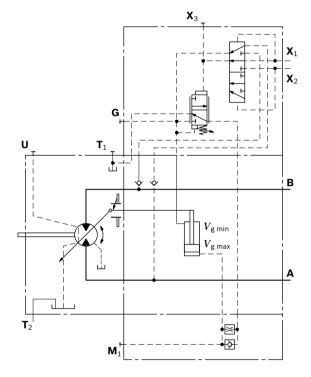
Response time damping

The response time damping is influencing the stroke characteristics of the motor and thus the reaction speed of the machine.

Standard with Size 60 to 215

DA with one sided throttle pin effects the stroking time of the motor from $V_{\rm g\,min}$ to $V_{\rm g\,max}$. (as to table)

Overview Throttle Pins


Size		60	85	115	150	170	215
Groove	[inch]	0.018	0.018	0.022	0.022	0.022	0.022
size	[mm]	0.45	0.45	0.55	0.55	0.55	0.65

DA0 hydraulic travel direction valve, negative control

Depending on the direction of rotation (travel direction), the travel direction value is switched by using pilot pressures connections X_1 or X_2 .

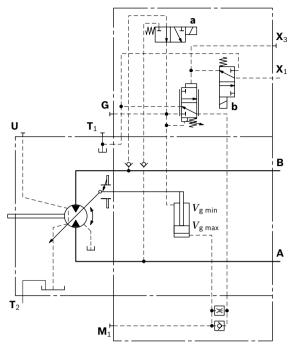
Direction of rotation	Operating pressure in	Pilot pressure in
cw	Α	X ₁
ccw	В	X ₂

Circuit diagram DA0

DA1, DA2 electric travel direction value + electric $V_{\rm g\ max}$ circuit, negative control

The travel direction valve is pressure spring offset or switched by energizing switching solenoid **a**, depending on the direction of rotation (travel direction).

When the switching solenoid **b** is energized, the DA control is overridden and the motor swivels to maximum displacement (high torque, lower speed) (electric $V_{\rm g\ max}$ -circuit).


Travel direction valve, electric

Technical data, sol	enoid a with DIA37	DA1	DA2		
Voltage		12 V (±20 %)	24 V (±20 %)		
Direction	Operating				
of rotation	pressure in				
ccw	В	de-energized	de-energized		
cw	Α	energized	energized		
Nominal resistance	(at 68 °F (20 °C))	5.5 Ω	21.7 Ω		
Nominal power		26.2 W	26.5 W		
Minimum required	active current	1.32 A	0.67 A		
Duty cycle		100 %	100 %		
Type of protection: see connector version on page 62					

Electric override

Technical data, solenoid b with DIA37	DA1	DA2			
Voltage	12 V (±20 %)	24 V (±20 %)			
No override	de-energized	de-energized			
Position $V_{g max}$	energized	energized			
Nominal resistance (at 68 °F (20 °C))	5.5 Ω	21.7 Ω			
Nominal power	26.2 W	26.5 W			
Minimum required active current	1.32 A	0.67 A			
Duty cycle	100 %	100 %			
Type of protection: see connector version on page 62					

▼ Circuit diagram DA1, DA2

24 **A6VM series 71** | Axial piston variable motor Electric travel direction valve (for DA, HA.R)

Electric travel direction valve (for DA, HA.R)

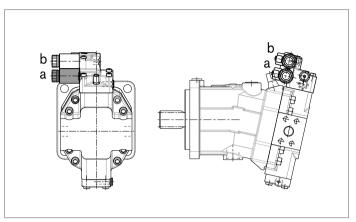
Application in travel drives in closed circuits. The travel direction value of the motor is actuated by an electric signal that also switches the swivel direction of the travel drive pump (e. g. A4VG with DA control value).

If the pump in the closed circuit is switched to the neutral position or into reverse, the vehicle may experience jerky deceleration or braking, depending on the vehicle's mass and current travel speed.

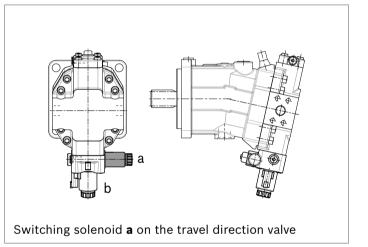
When the travel direction valve of the pump (e. g. 4/3-directional valve of the DA-control) is switched to

- the neutral position, the electric circuitry causes the previous signal on the travel direction valve on the motor to be retained.
- Reversing,

the travel direction valve causes the travel direction valve of the motor to switch to the other travel direction following a time delay (approx. 0.8 s) with respect to the pump.

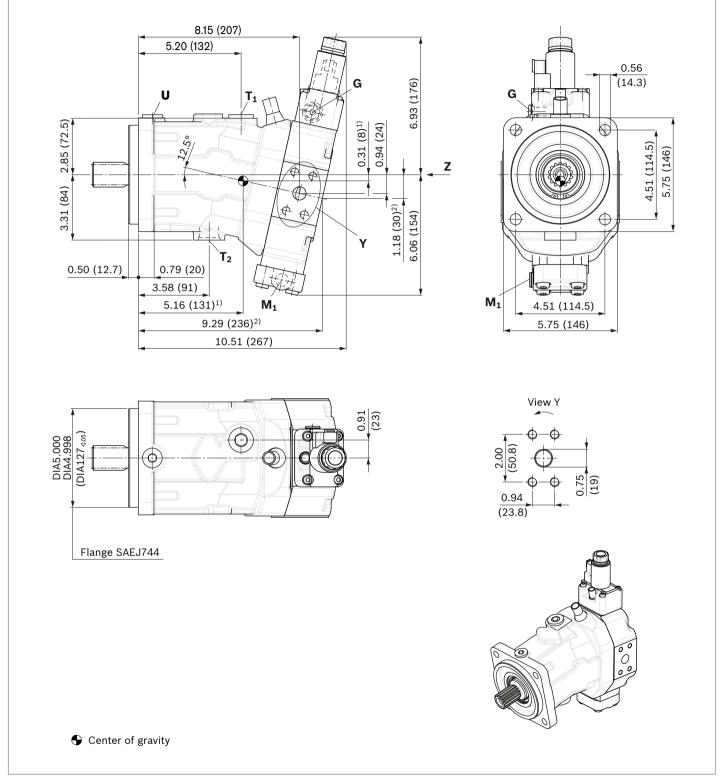

As a result, jerky deceleration or braking is prevented in both cases.

Circuit diagram - electric travel direction valve



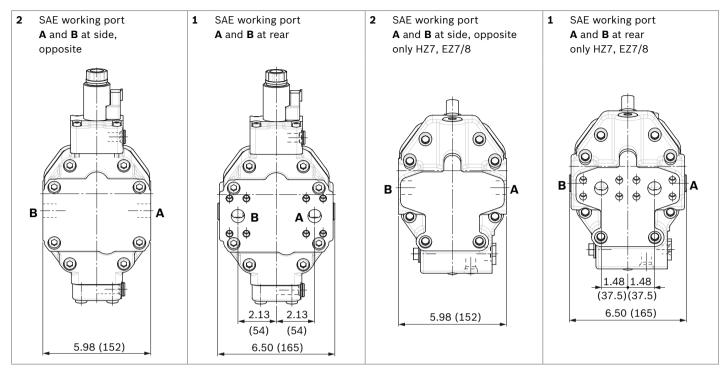
The diodes and relays shown are not included in the scope of delivery of the motor.

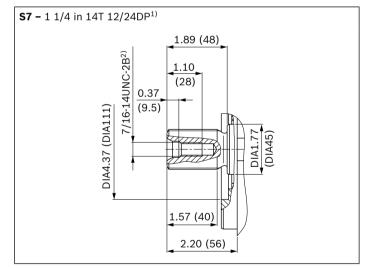
Control DA1, DA


HA1R., HA2R. control

Dimensions size 60

EP5, EP6 – Proportional electric control, negative control


Port plate 2 - SAE working ports **A** and **B** at side, opposite


¹⁾ Port plate 1 - SAE working ports **A** and **B** at rear

26 **A6VM series 71** | Axial piston variable motor Dimensions size 60

▼ Location of working ports on port plates (view Z)

▼ Splined shaft SAE J744

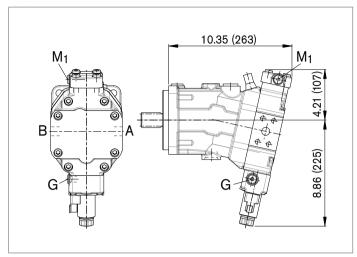
 Involute toothing acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

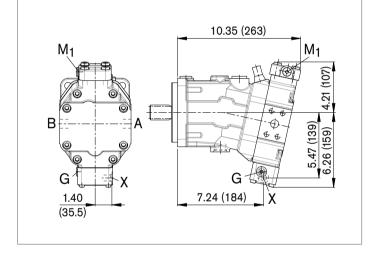
Ports		Standard	Size	$p_{\sf max}$ [psi (bar)] $^{1)}$	Status ⁶⁾
A, B ⁴⁾	Working port Mounting bolt A/B, screw grade 8 with hardened washer	SAE J518 ²⁾ ASME B1.1	3/4 in 3/8 in - 16 UNC-2B; 0.83 (21) deep	7250 psi (500 bar)	0
T ₁	Drain port	ISO 11926 ⁵⁾	1 1/16 in -12 UN-2B; 0.79 (20) deep	45 (3)	X ³⁾
T ₂	Drain port	ISO 11926 ⁵⁾	1 1/16 in -12 UN-2B; 0.79 (20) deep	45 (3)	O ³⁾
G	Synchronous control	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	7250 psi (500 bar)	Х
U	Bearing flushing	ISO11926 ⁵⁾	7/8 in -14 UNF-2B; 0.67 (17) deep	45 (3)	Х
х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	1450 (100)	0
X	Pilot signal (HA1, HA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	580 (40)	0
X ₁	Pilot signal (DA1, DA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	580 (40)	0
X ₃	Pilot signal (DA1, DA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	580 (40)	Х
M ₁	Measuring stroking chamber	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	7250 psi (500 bar)	Х

- 1) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 2) Only dimensions according to SAE J518.
- Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 72).

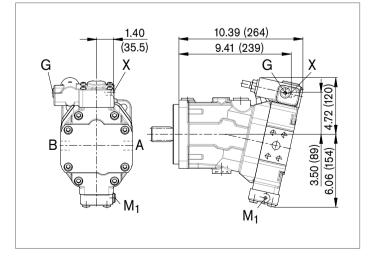
6) O = Must be connected (plugged on delivery)

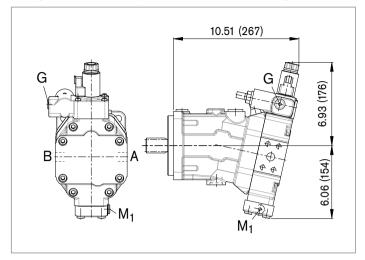

⁴⁾ For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells.

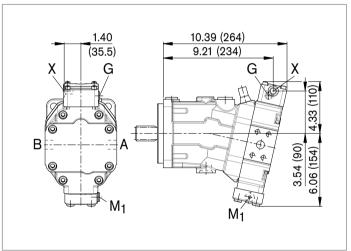
 $_{\rm 5)}$ The spot face can be deeper than as specified in the standard.

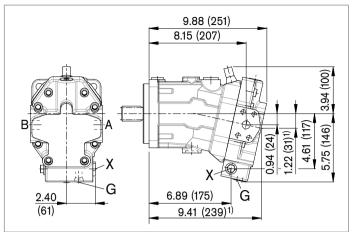

X = Plugged (in normal operation)

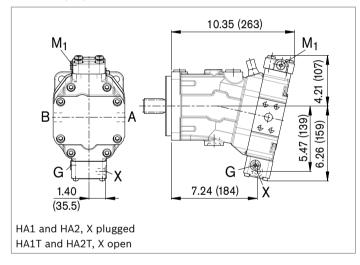
28 **A6VM series 71** | Axial piston variable motor Dimensions size 60

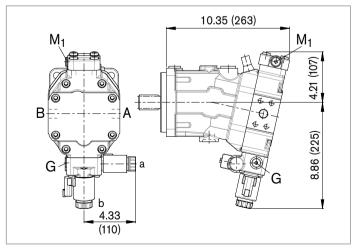

▼ EP1, EP2 - Electric proportional control, positive control


 HP1, HP2 – Hydraulic proportional control, positive control

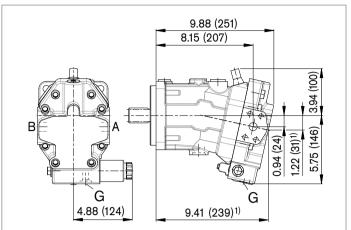

 HP5D1, HP6D1 – Hydraulic proportional control, negative control, with pressure control, fixed setting


 EP5D1, EP6D1 – Electric proportional control, negative control, with pressure control, fixed setting

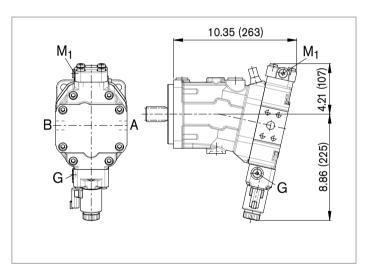

 HP5, HP6 – Hydraulic proportional control, negative control


 HZ7 – Hydraulic two-point control, negative control

▼ HA1, HA2 / HA1T3, HA2T3 – Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional

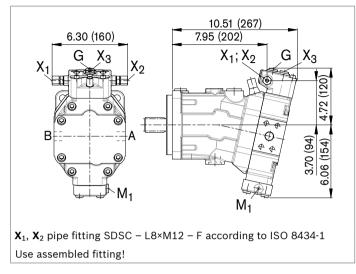


▼ HA1R1, HA2R2 – Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric

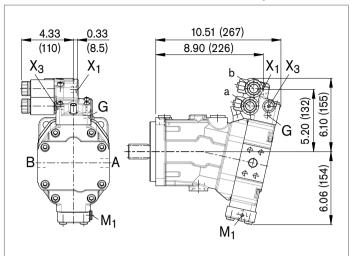


1) Port plate 1 – SAE working ports **A** and **B** at rear

▼ EZ7, EZ8 – Electric two-point control, negative control

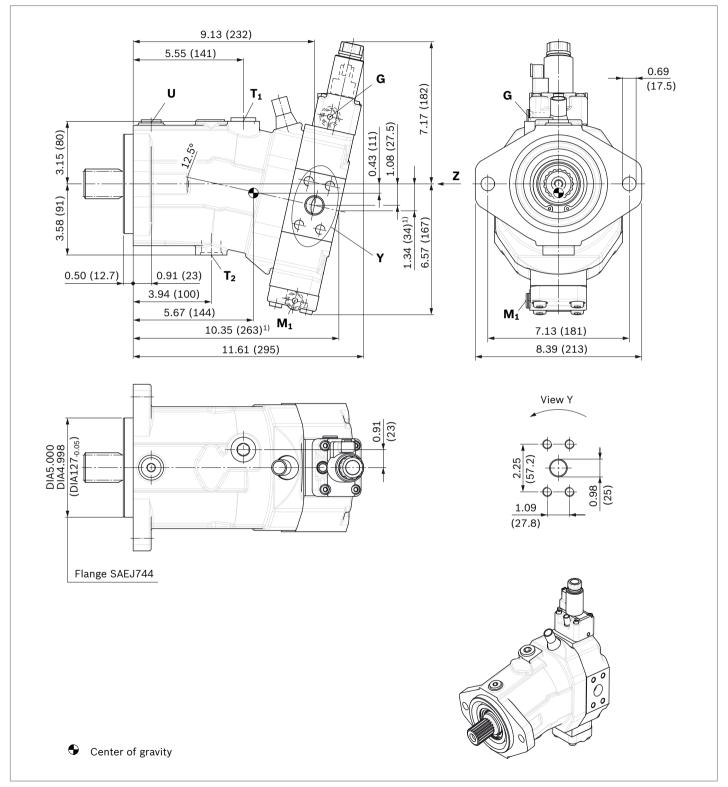


 HA1U1, HA2U2 – Automatic high-pressure-related control, positive control, with override, electric, two-point



30 **A6VM series 71** | Axial piston variable motor Dimensions size 60

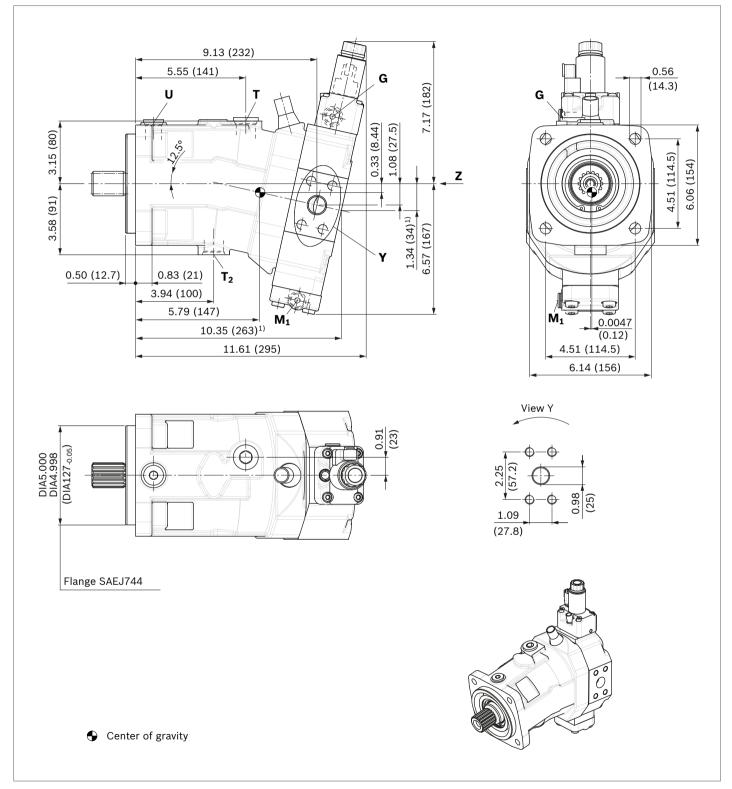
▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve


▼ DA1, DA2 – Automatic speed-related control, negative control, with electric travel direction valve and electric V_{g max} switch

Dimensions size 85

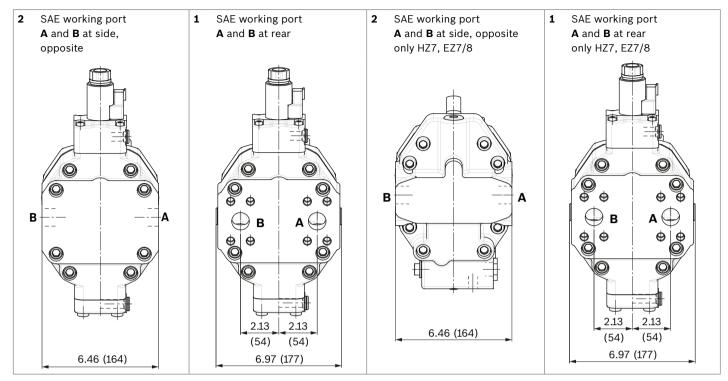
EP5, EP6 - Proportional electric control, negative control, with Mounting flange C2

Port plate 2 - SAE working ports **A** and **B** at side, opposite

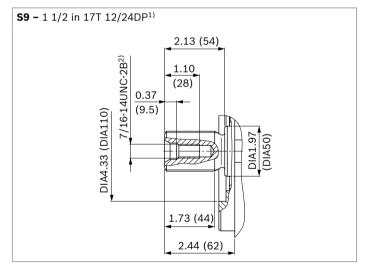


¹⁾ Port plate 1 - SAE working ports **A** and **B** at rear

Dimensions size 85


EP5, EP6 - Proportional electric control, negative control, with Mounting flange C4

Port plate 2 – SAE working ports \boldsymbol{A} and \boldsymbol{B} at side, opposite



Location of working ports on port plates (view Z)

▼ Splined shaft SAE J744

Involute toothing acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Thread according to ASME B1.1

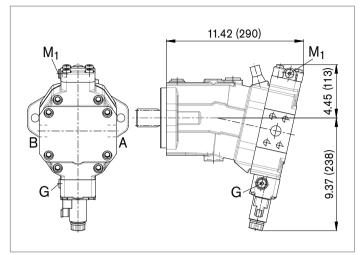
34 **A6VM series 71** | Axial piston variable motor Dimensions size 85

Ports		Standard	Size	p_{\max} [psi (bar)] ¹⁾	Status ⁶⁾
A, B ⁴⁾	Working port Mounting bolt A/B, screw grade 8 with hardened washer	SAE J518 ²⁾ ASME B1.1	1 in 7/16 in -14 UNC-2B; 0.87 (22) deep	7250 psi (500 bar)	0
T ₁	Drain port	ISO 11926 ⁵⁾	1 1/16 in -12 UN-2B; 0.79 (20) deep	45 (3)	X ³⁾
T ₂	Drain port	ISO 11926 ⁵⁾	1 1/16 in -12 UN-2B; 0.79 (20) deep	45 (3)	O ³⁾
G	Synchronous control	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	7250 psi (500 bar)	Х
U	Bearing flushing	ISO11926 ⁵⁾	7/8 in -14 UNF-2B; 0.67 (17) deep	45 (3)	Х
Х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	1450 (100)	0
x	Pilot signal (HA1, HA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	580 (40)	0
X ₁	Pilot signal (DA1, DA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	580 (40)	0
X ₃	Pilot signal (DA1, DA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	580 (40)	Х
M_1	Measuring stroking chamber	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	7250 psi (500 bar)	Х

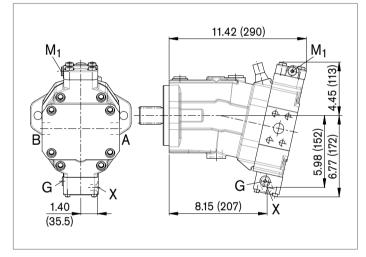
 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

 Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 72).

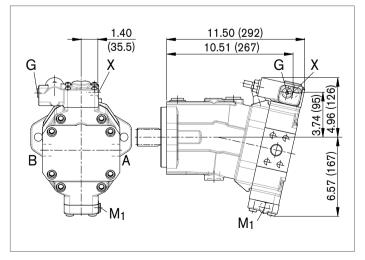
²⁾ Only dimensions according to SAE J518.

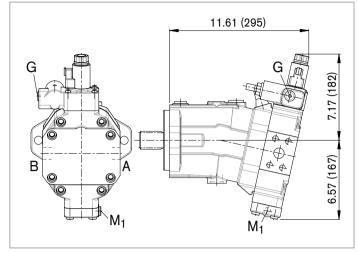

⁴⁾ For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells.

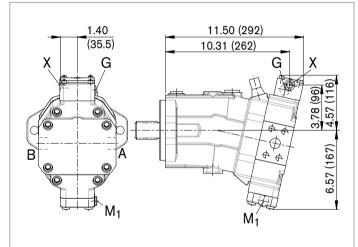
 $[\]ensuremath{\scriptscriptstyle 5}\xspace$) The spot face can be deeper than as specified in the standard.

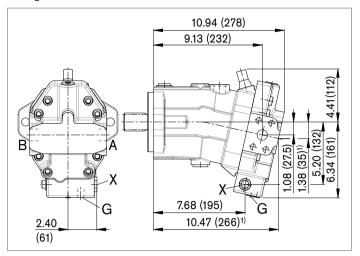

⁶⁾ O = Must be connected (plugged on delivery)

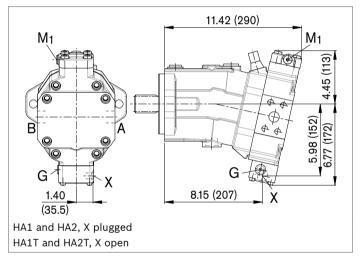
X = Plugged (in normal operation)

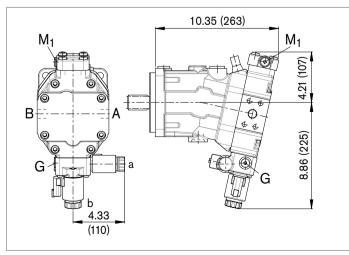

 EP1, EP2 – Electric proportional control, positive control


 HP1, HP2 – Hydraulic proportional control, positive control

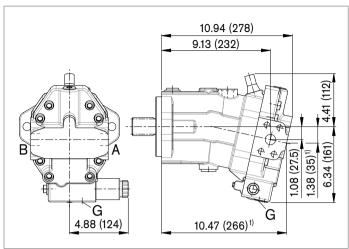

 HP5D1, HP6D1 – Hydraulic proportional control, negative control, with pressure control, fixed setting

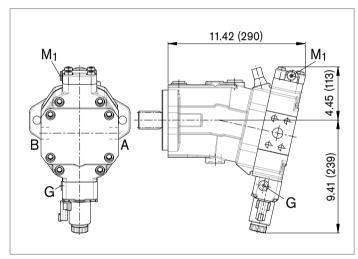

 EP5D1, EP6D1 – Electric proportional control, negative control, with pressure control, fixed setting


 HP5, HP6 – Hydraulic proportional control, negative control

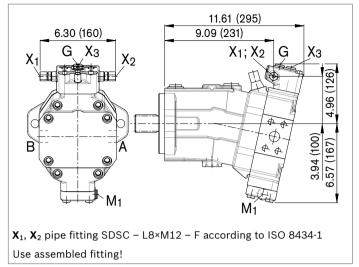

- 36 **A6VM series 71** | Axial piston variable motor Dimensions size 85
- HZ7 Hydraulic two-point control, negative control

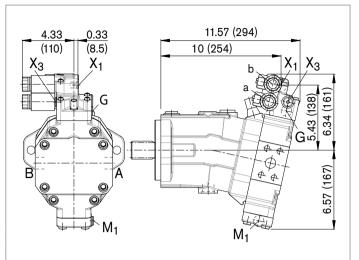
 HA1, HA2 / HA1T3, HA2T3 – Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional


▼ HA1R1, HA2R2 – Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric

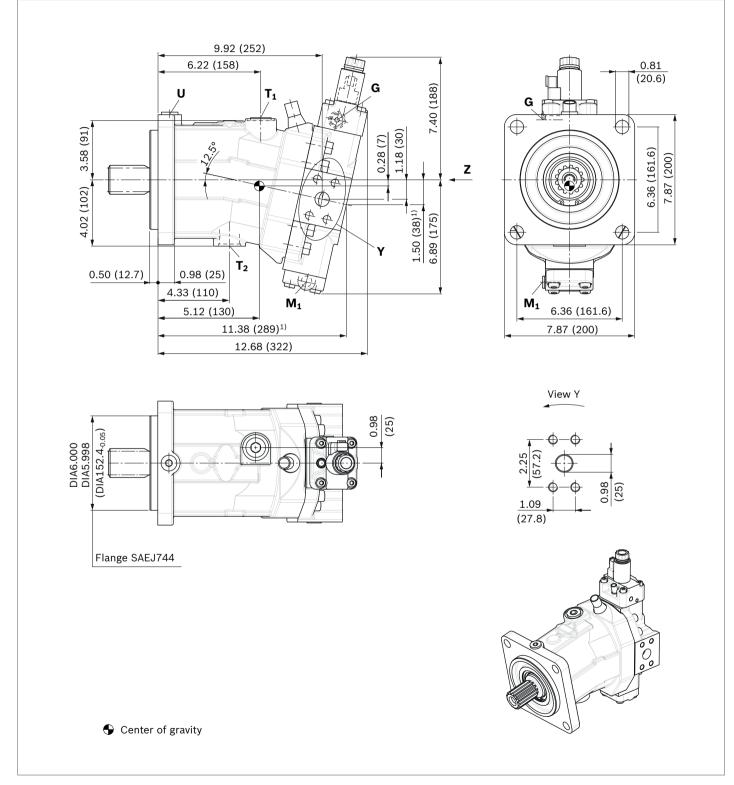

1) Port plate 1 - SAE working ports A and B at rear

Bosch Rexroth Corp., RE-A 91610/12.2015

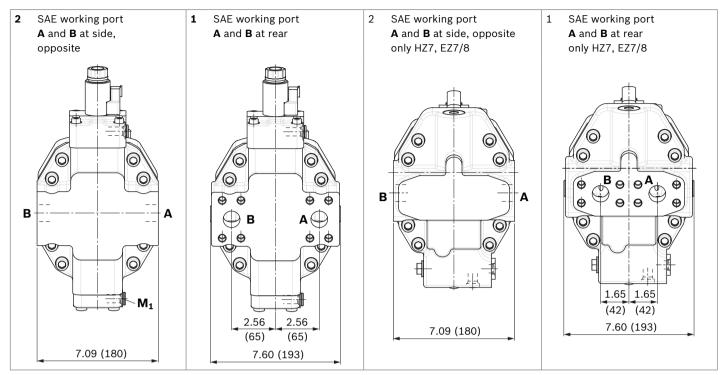

 E27, E28 – Electric two-point control, negative control


▼ HA1U1, HA2U2 – Automatic high-pressure-related control, positive control, with override, electric, two-point

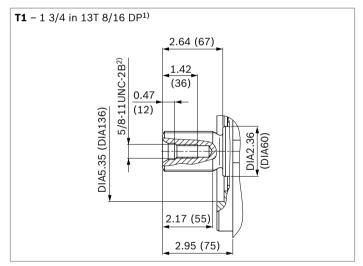
▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve


▼ DA1, DA2 – Automatic speed-related control, negative control, with electric travel direction valve and electric V_{g max} switch

Dimensions size 115


EP5, EP6 - Proportional electric control, negative control

Port plate 2 – SAE working ports \boldsymbol{A} and \boldsymbol{B} at side, opposite



¹⁾ Port plate 1 - SAE working ports **A** and **B** at rear

Location of working ports on port plates (view Z)

▼ Splined shaft SAE J744

 Involute toothing acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

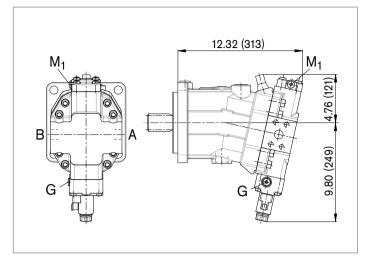
²⁾ Thread according to ASME B1.1

40 **A6VM series 71** | Axial piston variable motor Dimensions size 115

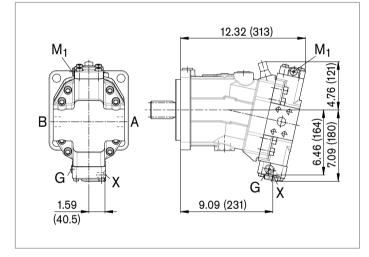
Ports		Standard	Size	p_{\max} [psi (bar)] ¹⁾	Status ⁶⁾
A, B ⁴⁾	Working port Mounting bolt A/B, screw grade 8 with hardened washer	SAE J518 ²⁾ ASME B1.1	1 in 7/16 in -14 UNC-2B; 0.87 (22) deep	7250 psi (500 bar)	0
T ₁	Drain port	ISO 11926 ⁵⁾	1 1/16 in -12 UN-2B; 0.79 (20) deep	45 (3)	X ³⁾
T ₂	Drain port	ISO 11926 ⁵⁾	1 5/16 in -12 UN-2B; 0.79 (20) deep	45 (3)	O ³⁾
G	Synchronous control	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	7250 psi (500 bar)	Х
U	Bearing flushing	ISO11926 ⁵⁾	7/8 in -14 UNF-2B; 0.67 (17) deep	45 (3)	Х
х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	1450 (100)	0
Х	Pilot signal (HA1, HA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	580 (40)	0
X ₁	Pilot signal (DA1, DA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	580 (40)	0
X ₃	Pilot signal (DA1, DA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	580 (40)	Х
M ₁	Measuring stroking chamber	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	7250 psi (500 bar)	Х

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

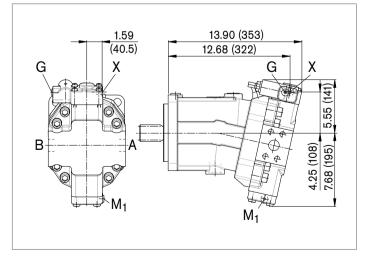
2) Only dimensions according to SAE J518.

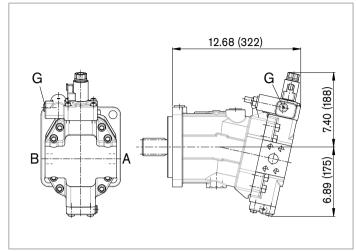

 Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 72). 4) For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells.

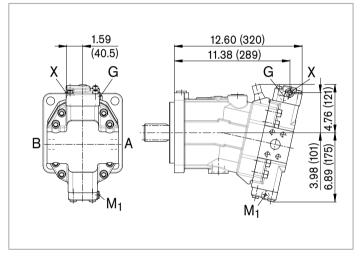
5) The spot face can be deeper than as specified in the standard.

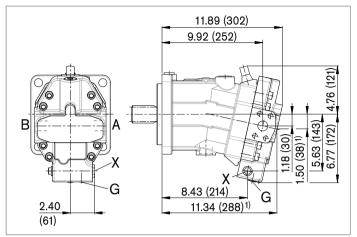

6) O = Must be connected (plugged on delivery)

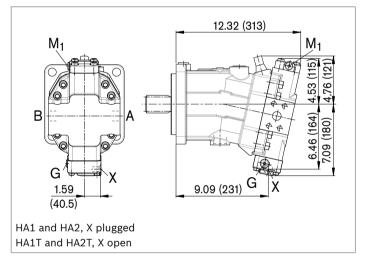
X = Plugged (in normal operation)

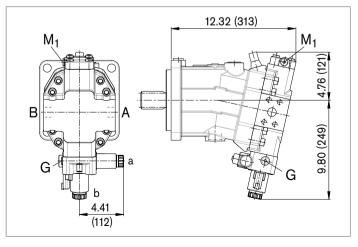

 EP1, EP2 – Electric proportional control, positive control


 HP1, HP2 – Hydraulic proportional control, positive control

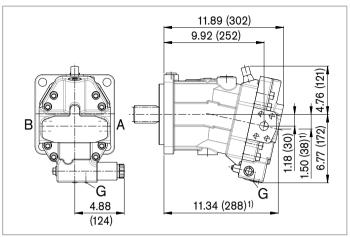

 HP5D1, HP6D1 – Hydraulic proportional control, negative control, with pressure control, fixed setting


 EP5D1, EP6D1 – Electric proportional control, negative control, with pressure control, fixed setting

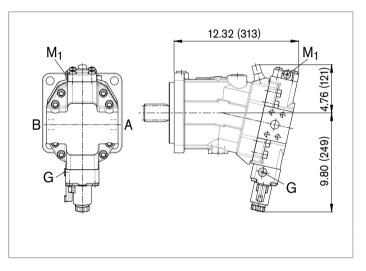

 HP5, HP6 – Hydraulic proportional control, negative control


- 42 **A6VM series 71** | Axial piston variable motor Dimensions size 115
- HZ7 Hydraulic two-point control, negative control

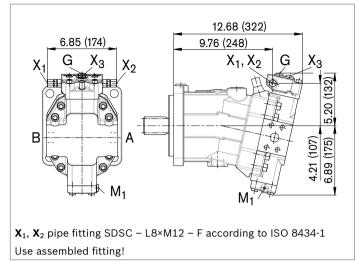
 HA1, HA2 / HA1T3, HA2T3 – Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional

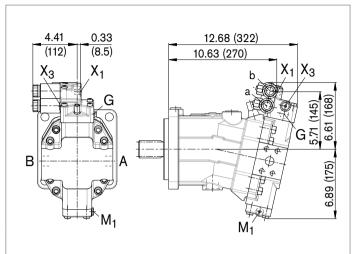


▼ HA1R1, HA2R2 – Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric

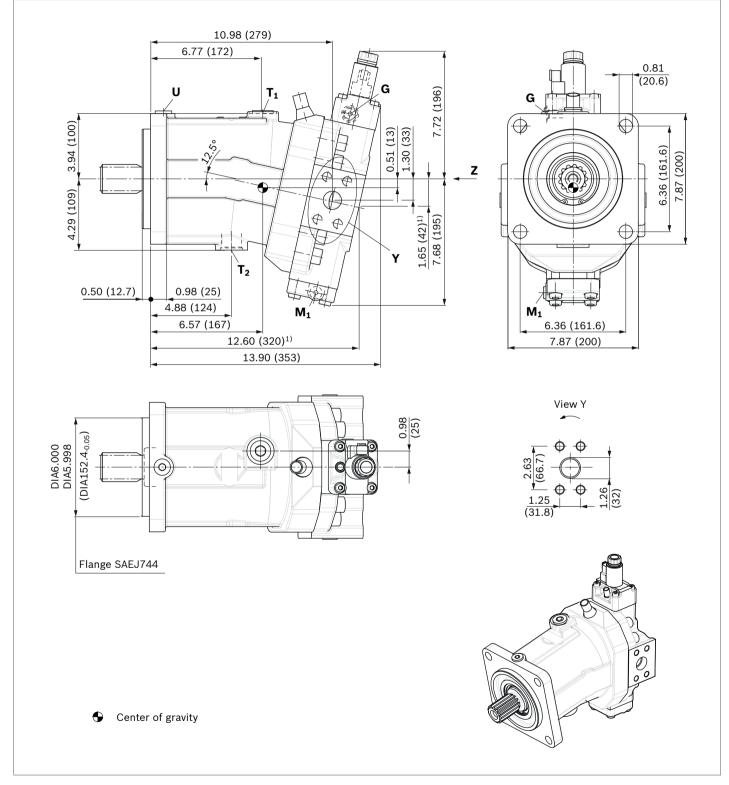


1) Port plate 1 - SAE working ports A and B at rear

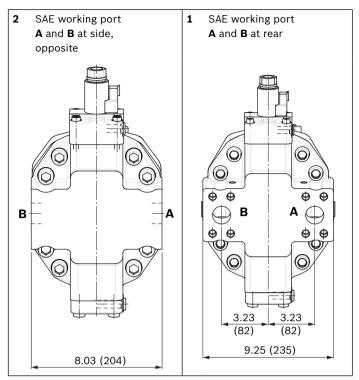

 EZ7, EZ8 – Electric two-point control, negative control


▼ HA1U1, HA2U2 – Automatic high-pressure-related control, positive control, with override, electric, two-point

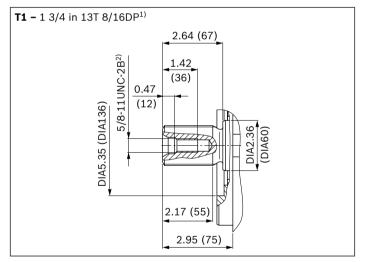
▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve


▼ DA1, DA2 – Automatic speed-related control, negative control, with electric travel direction valve and electric V_{g max} switch

Dimensions size 150


EP5, EP6 - Proportional electric control, negative control

Port plate 2 – SAE working ports \boldsymbol{A} and \boldsymbol{B} at side, opposite



¹⁾ Port plate 1 - SAE working ports **A** and **B** at rear

Location of working ports on port plates (view Z)

▼ Splined shaft SAE J744

Involute toothing acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

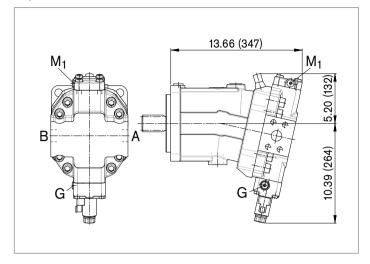
²⁾ Thread according to ASME B1.1

46 **A6VM series 71** | Axial piston variable motor Dimensions size 150

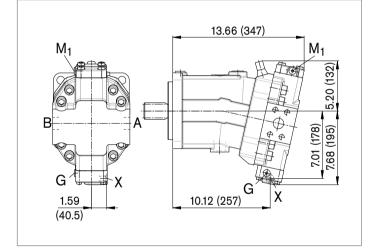
Ports		Standard	Size	$p_{\sf max}$ [psi (bar)] $^{1)}$	Status ⁶⁾
A, B ⁴⁾	Working port Mounting bolt A/B, screw grade 8 with hardened washer	SAE J518 ²⁾ ASME B1.1	1 1/4 in 1/2 in -13 UNC-2B; 0.75 (19) deep	7250 psi (500 bar)	0
T ₁	Drain port	ISO 11926 ⁵⁾	1 1/16 in -12 UN-2B; 0.79 (20) deep	45 (3)	X ³⁾
T ₂	Drain port	ISO 11926 ⁵⁾	1 5/16 in -12 UN-2B; 0.79 (20) deep	45 (3)	O ³⁾
G	Synchronous control	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	7250 psi (500 bar)	Х
U	Bearing flushing	ISO11926 ⁵⁾	7/8 in -14 UNF-2B; 0.67 (17) deep	45 (3)	Х
х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	1450 (100)	0
х	Pilot signal (HA1, HA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	580 (40)	0
X ₁	Pilot signal (DA1, DA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	580 (40)	0
X ₃	Pilot signal (DA1, DA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	580 (40)	Х
M 1	Measuring stroking chamber	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	7250 psi (500 bar)	Х

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

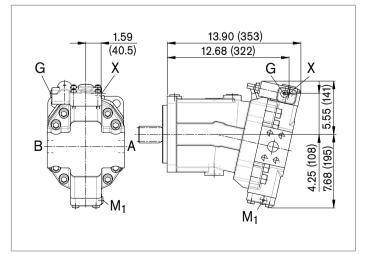
2) Only dimensions according to SAE J518.

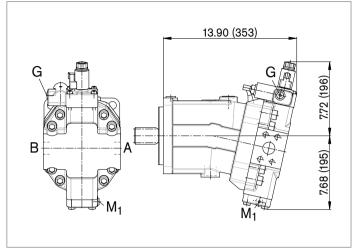

 Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 72). 4) For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells.

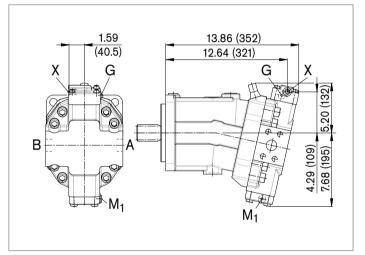
5) The spot face can be deeper than as specified in the standard.

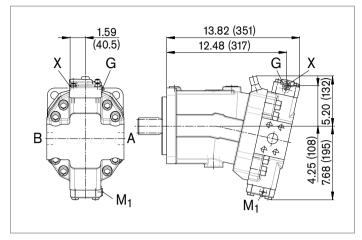

6) O = Must be connected (plugged on delivery)

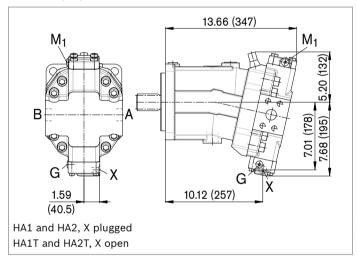
X = Plugged (in normal operation)

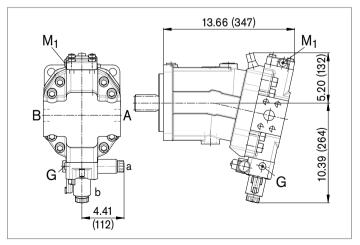

 EP1, EP2 – Electric proportional control, positive control

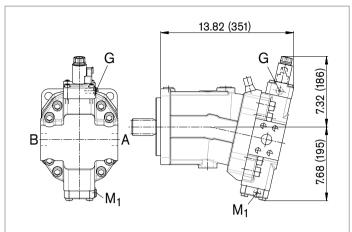

 HP1, HP2 – Hydraulic proportional control, positive control

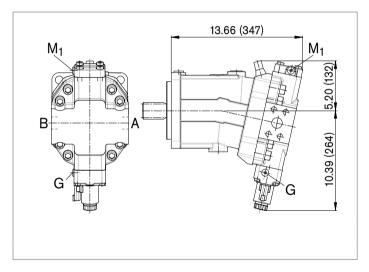

 HP5D1, HP6D1 – Hydraulic proportional control, negative control, with pressure control, fixed setting

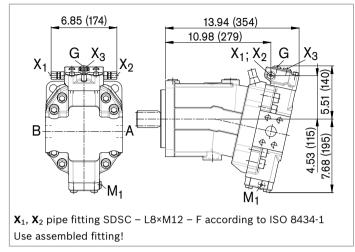

 EP5D1, EP6D1 – Electric proportional control, negative control, with pressure control, fixed setting

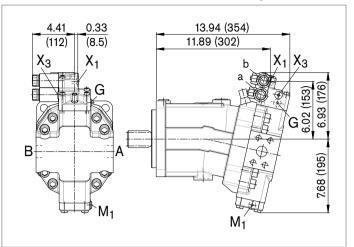

 HP5, HP6 – Hydraulic proportional control, negative control


- 48 **A6VM series 71** | Axial piston variable motor Dimensions size 150
- HZ5 Hydraulic two-point control, negative control

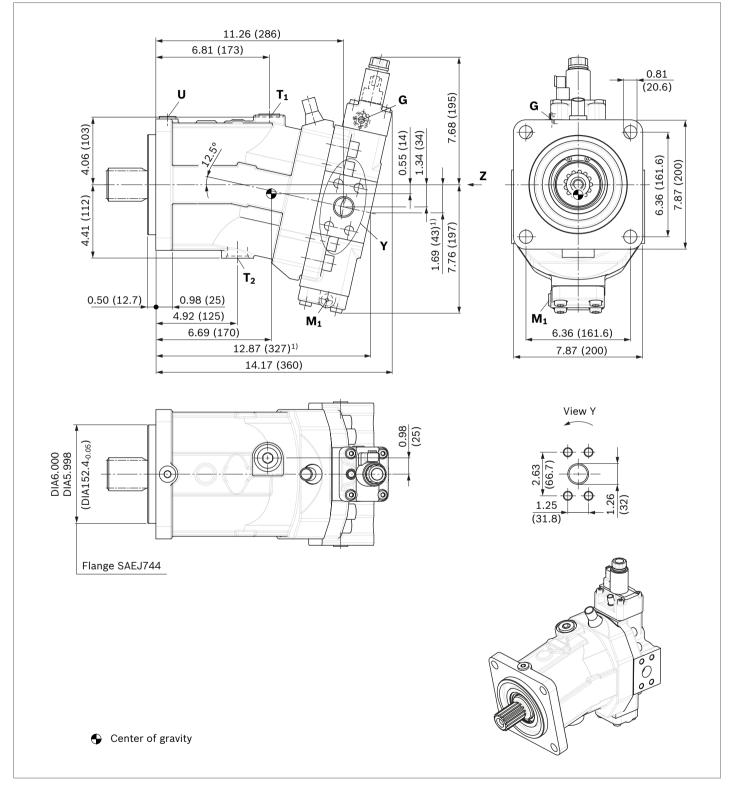

 HA1, HA2 / HA1T3, HA2T3 – Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional


▼ HA1R1, HA2R2 – Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric


 EZ5, EZ6 – Electric two-point control, negative control


▼ HA1U1, HA2U2 – Automatic high-pressure-related control, positive control, with override, electric, two-point

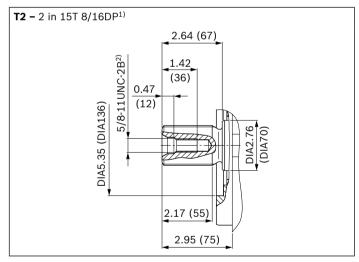
▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve


▼ DA1, DA2 – Automatic speed-related control, negative control, with electric travel direction valve and electric V_{g max} switch

Dimensions size 170

EP5, EP6 - Proportional electric control, negative control

Port plate 2 - SAE working ports **A** and **B** at side, opposite



¹⁾ Port plate 1 - SAE working ports **A** and **B** at rear

2 SAE working port 1 SAE working port A and B at side, A and B at rear opposite 6 6 ¢ Ø Φ 0 В Α В ()Φ_ φ Φ ¢ Q 2.99 2.99 (76) (76) 8.03 (204) 8.90 (226)

Location of working ports on port plates (view Z)

▼ Splined shaft SAE J744

Involute toothing acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Thread according to ASME B1.1

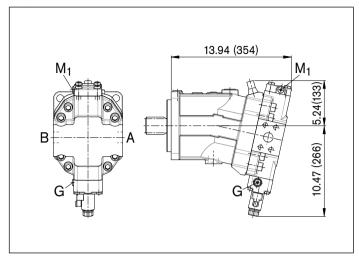
52 **A6VM series 71** | Axial piston variable motor Dimensions size 170

Ports		Standard	Size	p_{\max} [psi (bar)] ¹⁾	Status ⁶⁾
A, B ⁴⁾	Working port Mounting bolt A/B, screw grade 8 with hardened washer	SAE J518 ²⁾ ASME B1.1	1 1/4 in 1/2 in -13 UNC-2B; 0.75 (19) deep	7250 psi (500 bar)	0
T ₁	Drain port	ISO 11926 ⁵⁾	1 1/16 in -12 UN-2B; 0.79 (20) deep	45 (3)	X ³⁾
T ₂	Drain port	ISO 11926 ⁵⁾	1 5/16 in -12 UN-2B; 0.79 (20) deep	45 (3)	O ³⁾
G	Synchronous control	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	7250 psi (500 bar)	Х
U	Bearing flushing	ISO11926 ⁵⁾	7/8 in -14 UNF-2B; 0.67 (17) deep	45 (3)	Х
х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	1450 (100)	0
Х	Pilot signal (HA1, HA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	580 (40)	0
X ₁	Pilot signal (DA1, DA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	580 (40)	0
X ₃	Pilot signal (DA1, DA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	580 (40)	Х
M 1	Measuring stroking chamber	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	7250 psi (500 bar)	Х

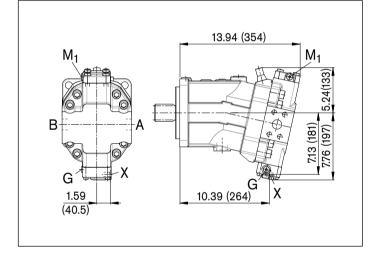
X = Plugged (in normal operation)

Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

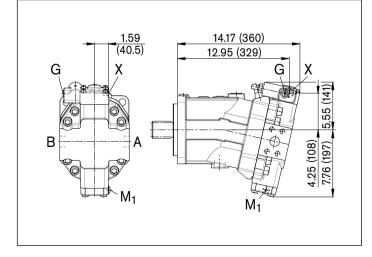
²⁾ Only dimensions according to SAE J518.

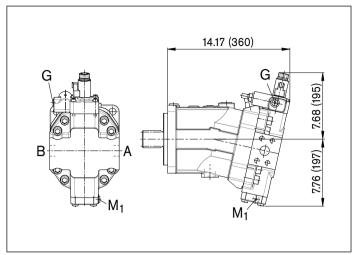

Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 72).

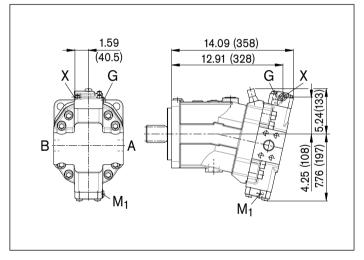
⁴⁾ For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells.

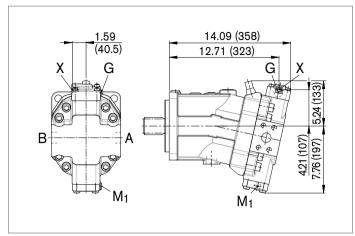

 $[\]ensuremath{\mathfrak{s}}\xspace$) The spot face can be deeper than as specified in the standard.

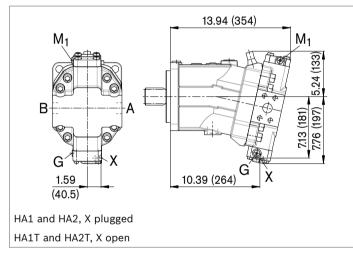
⁶⁾ O = Must be connected (plugged on delivery)

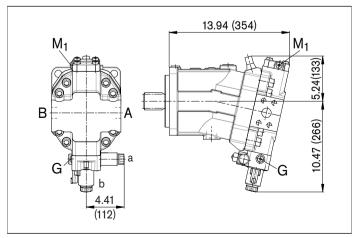

▼ EP1, EP2 – Electric proportional control, positive control

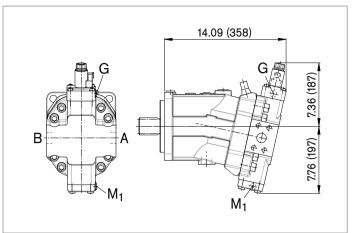

 HP1, HP2 – Hydraulic proportional control, positive control

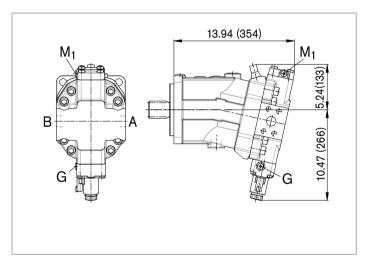

 HP5D1, HP6D1 – Hydraulic proportional control, negative control, with pressure control, fixed setting

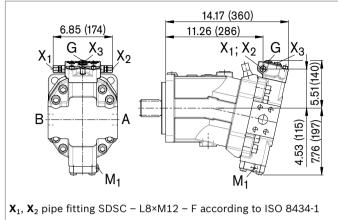

 EP5D1, EP6D1 – Electric proportional control, negative control, with pressure control, fixed setting


 HP5, HP6 – Hydraulic proportional control, negative control

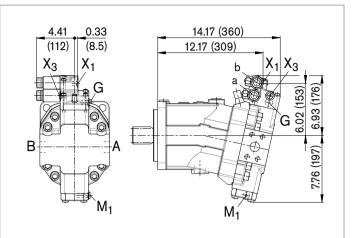

- 54 **A6VM series 71** | Axial piston variable motor Dimensions size 170
- HZ5 Hydraulic two-point control, negative control


 HA1, HA2 / HA1T3, HA2T3 – Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional

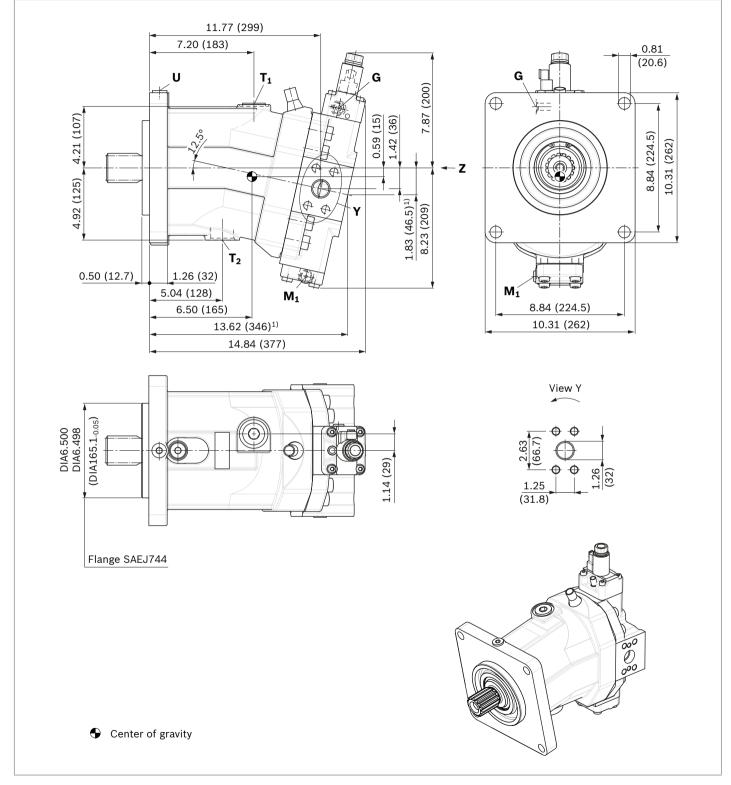

▼ HA1R1, HA2R2 – Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric


 EZ5, EZ6 – Electric two-point control, negative control

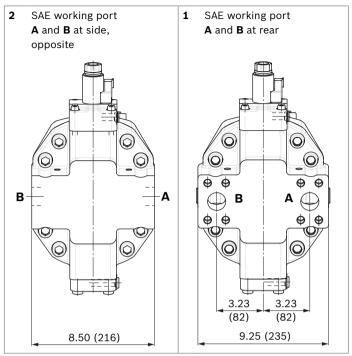
▼ HA1U1, HA2U2 – Automatic high-pressure-related control, positive control, with override, electric, two-point



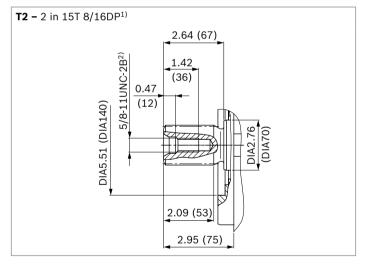
▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve


Use assembled fitting!

▼ DA1, DA2 – Automatic speed-related control, negative control, with electric travel direction valve and electric V_{g max} switch


EP5, EP6 - Proportional electric control, negative control

Port plate 2 – SAE working ports \boldsymbol{A} and \boldsymbol{B} at side, opposite



¹⁾ Port plate 1 - SAE working ports **A** and **B** at rear

Location of working ports on port plates (view Z)

▼ Splined shaft SAE J744

Involute toothing acc. to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Thread according to ASME B1.1

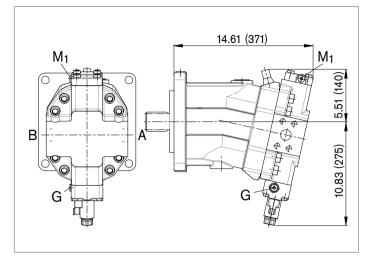
58 **A6VM series 71** | Axial piston variable motor Dimensions size 215

Ports		Standard	Size	p_{\max} [psi (bar)] ¹⁾	Status ⁶⁾
A, B ⁴⁾	Working port Mounting bolt A/B, screw grade 8 with hardened washer	SAE J518 ²⁾ ASME B1.1	1 1/4 in 1/2 in -13 UNC-2B; 0.75 (19) deep	7250 psi (500 bar)	0
T ₁	Drain port	ISO 11926 ⁵⁾	1 5/16 in -12 UN-2B; 0.79 (20) deep	45 (3)	X ³⁾
T ₂	Drain port	ISO 11926 ⁵⁾	1 5/8 in -12 UN-2B; 0.79 (20) deep	45 (3)	O ³⁾
G	Synchronous control	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	7250 psi (500 bar)	Х
U	Bearing flushing	ISO11926 ⁵⁾	7/8 in -14 UNF-2B; 0.67 (17) deep	45 (3)	Х
х	Pilot signal (HP, HZ, HA1T/HA2T)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	1450 (100)	0
Х	Pilot signal (HA1, HA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Pilot signal (DA0)	ISO 8434-1	SDSC-L8×M12-F	580 (40)	0
X ₁	Pilot signal (DA1, DA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	580 (40)	0
X ₃	Pilot signal (DA1, DA2)	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	580 (40)	Х
M ₁	Measuring stroking chamber	ISO 11926 ⁵⁾	9/16 in -18 UNF-2B; 0.51 (13) deep	7250 psi (500 bar)	Х

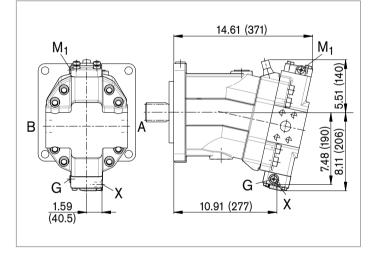
Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

²⁾ Only dimensions according to SAE J518.

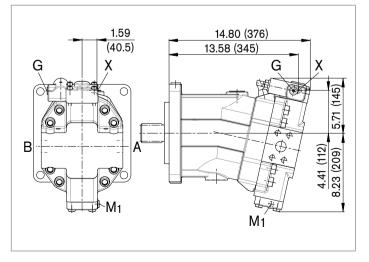
Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 72).

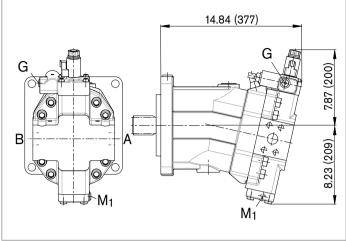

⁴⁾ For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells.

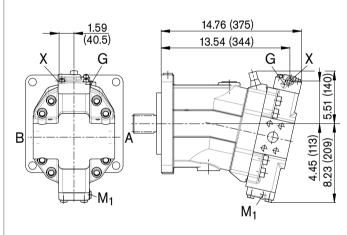
 $[\]ensuremath{\scriptscriptstyle 5}\xspace$ The spot face can be deeper than as specified in the standard.

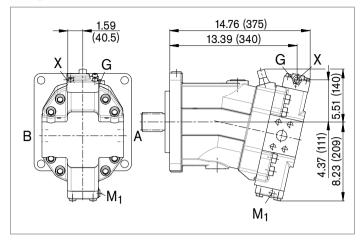

⁶⁾ O = Must be connected (plugged on delivery)

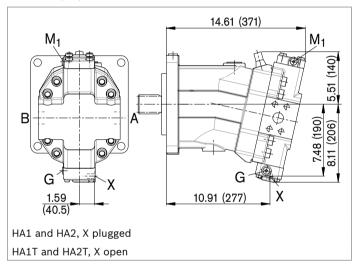
X = Plugged (in normal operation)

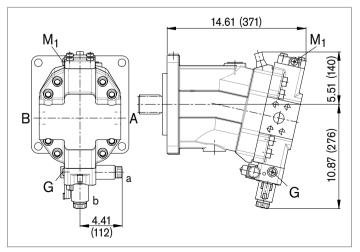

 EP1, EP2 – Electric proportional control, positive control


 HP1, HP2 – Hydraulic proportional control, positive control

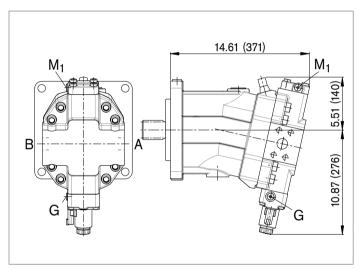

 HP5D1, HP6D1 – Hydraulic proportional control, negative control, with pressure control, fixed setting

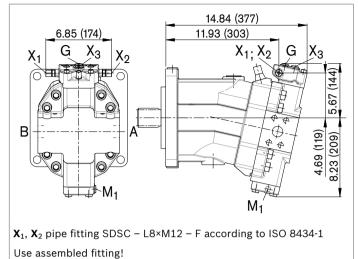

 EP5D1, EP6D1 – Electric proportional control, negative control, with pressure control, fixed setting

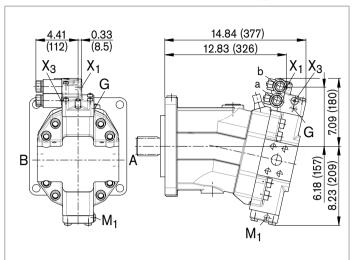

 HP5, HP6 – Hydraulic proportional control, negative control


- 60 **A6VM series 71** | Axial piston variable motor Dimensions size 215
- HZ5 Hydraulic two-point control, negative control


 HA1, HA2 / HA1T3, HA2T3 – Automatic high-pressure-related control, positive control, with override hydraulic remote controlled, proportional


▼ HA1R1, HA2R2 – Automatic high-pressure-related control, positive control, with override, electric and travel direction valve, electric


 EZ5, EZ6 – Electric two-point control, negative control


▼ HA1U1, HA2U2 – Automatic high-pressure-related control, positive control, with override, electric, two-point

▼ **DA0** – Automatic speed-related control, negative control, with hydraulic travel direction valve

▼ DA1, DA2 – Automatic speed-related control, negative control, with electric travel direction valve and electric V_{g max} switch

62 **A6VM series 71** | Axial piston variable motor Connector for solenoids

Connector for solenoids

DEUTSCH DT04-2P-EP04

Molded connector, 2-pin, without bidirectional suppressor diode

There is the following type of protection with mounted mating connector:

- ▶ IP67 (DIN/EN 60529) and
- ▶ IP69K (DIN 40050-9)

Circuit symbol

▼ Mating connector DEUTSCH DT06-2S-EP04

Consisting of	DT designation		
1 housing	DT06-2S-EP04		
1 wedge	W2S		
2 sockets	0462-201-16141		

The mating connector is not included in the scope of delivery.

This can be supplied by Bosch Rexroth on request (material number R902601804).

Note

- If necessary, you can change the position of the connector by turning the solenoid.
- The procedure is defined in the operating instructions.

Flushing and boost pressure valve

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In a closed circuit, it is used for flushing the case and safeguarding the minimum boost pressure.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the leakage. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

The valve is mounted onto the port plate or integrated (depending on the control type and size).

Cracking pressure of pressure retaining valve

(observe when adjusting the primary valve)

Sizes 60 to 215, fixed setting 230 psi (16 bar)

Switching pressure of flushing spool Δp

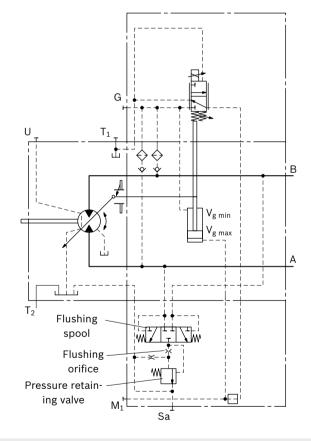
- Sizes 60 to 215 (small flushing valve) 115±15 psi (8±1 bar)
- Sizes 115 to 215 (medium and large flushing valve) 254±22.5 psi (17.5±1.5 bar)

Flushing flow q_v

Orifices can be used to adjust the flushing flows as required. The following information is based on: $\Delta p_{\rm ND} = p_{\rm ND} - p_{\rm G} = 365 \text{ psi} (25 \text{ bar}) \text{ and } v = 60 \text{ SUS (10 mm}^2/\text{s})}$ ($p_{\rm ND}$ = low pressure, $p_{\rm G}$ = case pressure)

Small flushing valve for sizes 60 to 115

Material number of orifice	DIA [inch] (ø [mm])	q_{v} [gpm (l/min)]	Code
R909651766	0.047 (1.2)	0.9 (3.5)	А
R909419695	0.055 (1.4)	1.3 (5)	В
R909419696	0.071 (1.8)	2.1 (8)	С
R909419697	0.079 (2.0)	2.6 (10)	D
R909444361	0.094 (2.4)	3.7 (14)	F

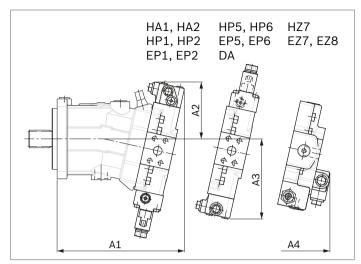

Medium flushing valve for size 115

Material number of orifice	DIA [inch] (ø [mm])	q_{v} [gpm (l/min)]	Code
R909449997	0.055 (1.4)	1.3 (5)	В
R909449998	0.071 (1.8)	2.1 (8)	С
R909431308	0.079 (2.0)	2.6 (10)	D
R909431309	0.10 (2.5)	3.9 (15)	G
R909431310	0.11 (2.8)	4.8 (18)	I
R902138235	0.12 (3.1)	5.5 (21)	J
R909435172	0.14 (3.5)	7.1 (27)	К
R909436622	0.16 (4.0)	8.2 (31)	L

Large flushing valve for sizes 150 to 215

Material number of orifice	DIA [inch] (ø [mm])	q_{v} [gpm (l/min)]	Code
R909449997	0.055 (1.4)	1.3 (5)	В
R909449998	0.071 (1.8)	2.1 (8)	С
R909431308	0.079 (2.0)	2.6 (10)	D
R909431309	0.10 (2.5)	3.9 (15)	G
R909431310	0.11 (2.8)	4.8 (18)	I
R902138235	0.12 (3.1)	5.5 (21)	J
R909435172	0.14 (3.5)	7.1 (27)	К
R909436622	0.16 (4.0)	8.2 (31)	L
R909449967	0.20 (5.0)	9.7 (37)	М

Circuit diagram EP



Information

- ▶ Port **S**_a only for sizes 150 to 215
- For a flushing flow greater than 9.2 gpm (35 l /min), it is recommended that port S_a be connected in order to prevent an increase in case pressure. An increased case pressure reduces the flushing flow.

64 A6VM series 71 | Axial piston variable motor Flushing and boost pressure valve

▼ Dimensions of sizes 60 to 115 (small flushing valve)

NG	A1	A2	A3	A4
60	10.51	5.39	6.93	10.24
	(267)	(137)	(176)	(260)
85	11.69	5.59	7.64	10.94
	(297)	(142)	(194)	(278)
115	12.56	5.63	7.95	11.85
	(319)	(143)	(202)	(301)

HA1, HA2 HP1, HP2

EP1, EP2

日

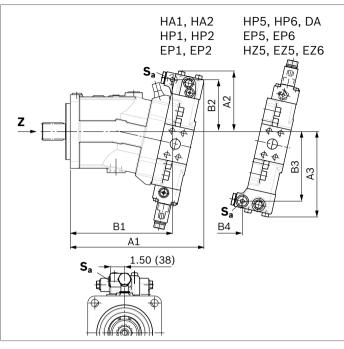
Ф

5.94 (151) HP5, HP6

EP5, EP6

DA

Œ.


8.07 (205)

▼ Dimensions of size 115 (medium flushing valve)

12.76 (324)

The spot face can be deeper than as specified in the standard.

Dimensions for sizes 150 to 215 (large flushing valve) ▼

NG	A1	B1	A2	B2	A3	B3	B4
150	14.06	10.67	6.50	5.59	9.06	7.36	7.80
	(357)	(271)	(165)	(142)	(230)	(187)	(198)
170	14.33	10.94	6.50	5.59	9.17	7.48	8.03
	(364)	(278)	(165)	(142)	(233)	(190)	(204)
215	15.00	11.61	6.77	5.83	9.61	7.91	8.54
	(381)	(295)	(172)	(148)	(244)	(201)	(217)

NG	S _a ¹⁾
150	
170	7/8-14UNF-2B; 0.67 (17) deep
215	

1) ISO 11926, ports plugged (in normal operation)

Counterbalance valve BVD and BVE

Function

Counterbalance valves for drives and winches should reduce the danger of overspeed and cavitation in open circuits of axial piston motors. Cavitation occurs if, during braking, when going downhill or during the load-lowering process, the motor speed is greater than it should be for the given inlet flow and thus the inlet pressure collapses. If the inlet pressure falls below the level specified for the relevant counterbalance valve, the counterbalance valve piston moves into the closed position. The cross-sectional area of the counterbalance valve return duct is then reduced, creating a restriction in the return flow of the hydraulic fluid. The pressure increases and brakes the motor until the speed of the motor reaches the specified value for the given inlet flow.

Note

- BVD available for sizes 60 to 215 and BVE available for sizes 115 to 215.
- The BVD counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set.
 Order example:A6VM085HA1T30004A/71AWV0C2
 97W0-0 + BVD20F27S/41B-V03K16D0400S12

- ► For safety reasons, controls with beginning of control at V_{g min} (e.g. HA) are not permissible for winch drives!
- Counterbalance valves must be optimized during prototype commissioning to prevent unacceptable operating conditions and compliance with the specification must be verified.
- The counterbalance valve does not replace the mechanical service brake and parking brake.
- Observe the detailed notes on the BVD counterbalance valve in RE 95522 and BVE counterbalance valve in RE 95525.
- ► For the design of the brake release valve, we require the following data for the mechanical holding brake:
 - the cracking pressure
 - the volume of the brake spool between minimum stroke (brake closed) and maximum stroke (brake released with 305 psi (21 bar))
 - the required closing time for a warm device (oil viscosity approx. 69.6 SUS (15 mm²/s))

	Without valv	/e	Limited values when using DBV and BVD/BVE							
Motor			DBV ¹⁾				BVD ²⁾ /BVE ³⁾			
NG	p _{nom} /p _{max} [psi (bar)]	q _{V max} [gpm (l/min)]	NG	p _{nom} /p _{max} [psi (bar)]	$q_{ m V}$ [gpm (l/min)]	Code	NG	p _{nom} /p _{max} [psi (bar)]	$q_{ m V}$ [gpm (l/min)]	Code
60	6500 /7250	73 (276)	22	5100/6100	63 (240)	7	20	5100/6100	58 (220)	7W
85	(450/500)	88 (332)		(350/420)			(BVD)	(350/420)		
115		108 (410)	32		106 (400)					
115		108 (410)				8	25		85 (320)	8W
150]	131 (494)					(BVD/BVE)			
170]	141 (533)								
215		166 (628)	On request							

Permissible input flow or pressure when using DBV and BVD/BVE

Mounting of the counterbalance valve

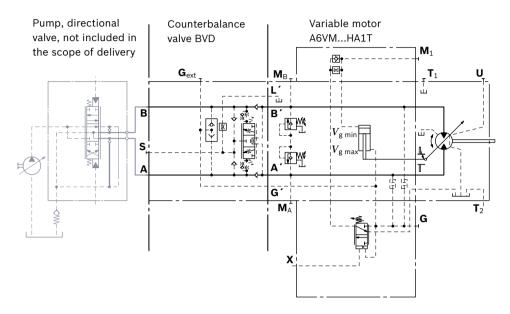
When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport lock). The tacking screws may not be removed while mounting the working ports. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The final mounting of the counterbalance valve on the motor is done with screw fitting of the SAE flange. The screws to be used and the procedure mountings can be found in the instruction manual.

¹⁾ Pressure-relief valve

²⁾ Counterbalance valve, double-acting

³⁾ Counterbalance valve, single-acting

66 **A6VM series 71** | Axial piston variable motor Counterbalance valve BVD and BVE

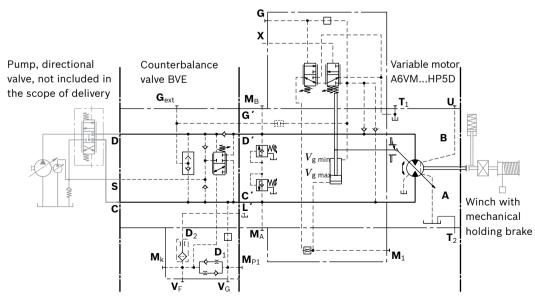

Counterbalance valve for travel drive BVD...F

Application option

Travel drive for wheeled excavators (BVD and BVE)

▼ Example schematic for travel drive on wheeled excavators

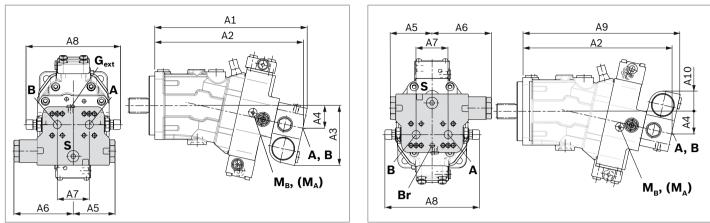
A6VM085HA1T30004A/71AWV0C2S97W0-0 + BVD20F27S/41B-V03K16D0400S12


Counterbalance valve for winches and track drives BVD...W and BVE

Application option

- Winch drives in cranes (BVD and BVE)
- Track drive in crawler excavators (BVD)

▼ Example schematic for winch drive in cranes


A6VM085HP5D10001A/71AWV0C2S97W0-0 + BVE25W38S/51ND-V100K00D4599T30S00-0

Dimensions

▼ A6VM...HA, HP1, HP2 and EP1, EP2

▼ A6VM...HP5, HP6 and EP5, EP6¹⁾

A6VM	Counterbalance valve											
NGplate	Туре	Ports	Dimension	S								
		А, В	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
607	BVD2017	3/4 in	13.19 (335)	12.83 (326)	5.63 (143)	1.97 (50)	3.86 (98)	5.47 (139)	2.95 (75)	8.74 (222)	13.78 (350)	1.97 (50)
857	BVD2027	1 in	14.33 (364)	13.98 (355)	5.83 (148)	2.17 (55)	3.86 (98)	5.47 (139)	2.95 (75)	8.74 (222)	14.92 (379)	1.81 (46)
1157	BVD2028	1 in	15.51 (394)	15.16 (385)	5.98 (152)	2.32 (59)	3.86 (98)	5.47 (139)	3.31 (84)	9.21 (234)	16.10 (409)	1.61 (41)
1158	BVD2538	1 1/4 in	16.22 (412)	15.83 (402)	6.50 (165)	2.48 (63)	4.74 (120.5)	6.89 (175)	3.31 (84)	9.37 (238)	16.81 (427)	2.20 (56)
1508	BVD2538	1 1/4 in	17.44 (443)	17.01 (433)	6.61 (168)	2.64 (67)	4.74 (120.5)	6.89 (175)	3.31 (84)	9.37 (238)	18.03 (458)	2.09 (53)
1708	BVD2538	1 1/4 in	17.68 (449)	17.28 (439)	6.69 (170)	2.68 (68)	4.74 (120.5)	6.89 (175)	3.31 (84)	9.37 (238)	18.27 (464)	2.01 (51)
2158	BVD2538	1 1/4 in	18.90 (480)	18.50 (470)	6.93 (176)	2.91 (74)	4.74 (120.5)	6.89 (175)	3.31 (84)	11.77 (299)	19.49 (495)	1.81 (46)
1158	BVE2538	1 1/4 in	16.22 (412)	15.83 (402)	6.73 (171)	2.48 (63)	5.39 (137)	8.43 (214)	3.31 (84)	9.37 (238)	16.89 (429)	2.48 (63)
1508	BVE2538	1 1/4 in	17.44 (443)	17.01 (433)	6.89 (175)	2.64 (67)	5.39 (137)	8.43 (214)	3.31 (84)	9.37 (238)	17.91 (455)	2.32 (59)
1708	BVE2538	1 1/4 in	17.68 (449)	17.28 (439)	6.93 (176)	2.68 (68)	5.39 (137)	8.43 (214)	3.31 (84)	9.37 (238)	18.27 (464)	2.32 (59)
2158	BVE2538	1 1/4 in	18.90 (480)	18.50 (470)	7.17 (182)	2.91 (74)	5.39 (137)	8.43 (214)	3.31 (84)	11.77 (299)	19.49 (495)	2.05 (52)

Ports		Version	A6VM plate	Standard	Size	p _{max perm} [psi (bar)] ²⁾	Status
А, В	Working line			SAE J518	see table above	6100 (420)	0
S	Infeed	BVD20		DIN 3852 ³⁾	M22 × 1.5; 14 deep	435 (30)	Х
		BVD25, BVE25		DIN 3852 ³⁾	M27 × 2; 16 deep	435 (30)	Х
Br	Brake release, reduced high	L	7	DIN 3852 ³⁾	M12 × 1.5; 12.5 deep	435 (30)	0
	pressure		8	DIN 3852 ³⁾	M12 × 1.5; 12 deep	435 (30)	0
G _{ext}	Brake release, high pressure	S		DIN 3852 ³⁾	M12 × 1.5; 12.5 deep	6100 (420)	Х
M _A , M _B	Measuring pressure A and B			ISO 6149 ³⁾	M18 × 1.5; 14.5 deep	6100 (420)	Х

 At the mounting version for the controls HP5, HP6 and EP5, EP6, the cast-in port designations **A** and **B** on the counterbalance valve BVD do not correspond with the connection drawing of the A6VM motor. The designation of the ports on the installation drawing of the motor is binding!

X = Plugged (in normal operation)

²⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

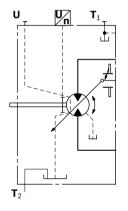
³⁾ The spot face can be deeper than as specified in the standard.

O = Must be connected (plugged on delivery)

Mounting the counterbalance valve

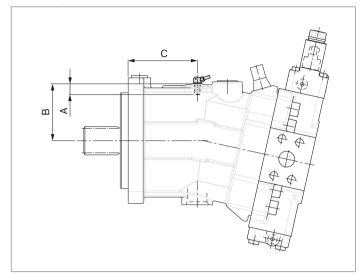
When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport lock). The tacking screws may not be removed while mounting the working ports! If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The final mounting of the counterbalance valve on the motor is done with screw fitting of the SAE flange. The screws to be used and the procedure mounting can be found in the instruction manual.

Speed sensor


Version A6VM...U ("prepared for speed sensor", i.e. without sensor) is equipped with a spline on the rotary group.

A signal proportional to motor speed can be generated with the fitted DSA/DSM speed sensor. The DSA/DSM sensor registers the speed and direction of rotation.

Ordering code, technical data, dimensions and details on the connector, plus safety instructions about the sensor can be found in the relevant data sheet (95132 for DSM, 95133 for DSA).


The sensor is mounted on the port provided for this purpose with a mounting bolt. On deliveries without sensor, the port is plugged with a pressure-resistant cover. We recommend ordering the A6VM variable motor complete with mounted sensor.

Circuit diagram EP

Dimensions

"V" design with mounted speed sensor

Size	60	85	115	150	170	215
Number of teeth	54	58	67	72	75	80
A Insertion depth	0.72	0.72	0.72	0.72	0.72	0.72
(tolerance -0.0098 (-0.25))	(18.4)	(18.4)	(18.4)	(18.4)	(18.4)	(18.4)
B Contact surface	2.95	3.11	3.46	3.66	3.78	3.98
	(75)	(79)	(88)	(93)	(96)	(101)
С	3.55	3.91	4.30	4.85	4.87	5.01
	(90.2)	(99.2)	(109.2)) (123.7)	(123.7)	(127.2)

Setting range for displacement

		(50			8	35		115				
	V _g [in ³ /rev (V _g , [in ³ /rev (c		V _g [in ³ /rev (V _g [in ³ /rev (d		V _g [in ³ /rev (d	^{max} cm ³ /rev)]		^{min} cm ³ /rev)]	
	from	to	from	to	from	to	from	to	from	to	from	to	
Α	3.78	3.78	0.0	0.92	3.35	3.35	0.0	0.55	7.05	7.05	0.0	1.46	
	(62.0)	(62.0)	(0.0)	(15.0)	(85.2)	(85.2)	(0.0)	(9.0)	(115.6)	(115.6)	(0.0)	(24.0)	
	without	t screw	M10 × 60 R909154690		without screw		M12 × 60 R909083530		without	screw	M12 × 70 R909085976		
В	3.78	3.78	> 0.92	1.86	3.35	3.35	> 0.55	1.71	7.05	7.05	> 1.46	2.90	
	(62.0)	(62.0)	(> 15.0)	(30.5)	(85.2)	(85.2)	(> 9.0)	(28.0)	(115.6)	(115.6)	(> 24.0)	(47.5)	
	without	t screw	M10 × 70 R909153779		without	t screw	M12 R9090		without	screw	M12 × 80 R909153075		
С	3.78	3.78	> 1.86	2.62	3.35	3.35	> 1.71	2.87	7.05	7.05	> 2.90	4.33	
	(62.0)	(62.0)	(> 30.5)	(43.0)	(85.2)	(85.2)	(> 28.00)	(47.0)	(115.6)	(115.6)	(> 47.5)	(71.0)	
	without	t screw	M10 R9091		without	t screw		M12 × 80 R909153075		screw	M12 × 90 R909154041		
D					3.35	3.35	> 2.87	3.60	7.05	7.05	> 4.33	4.88	
	,	,			(85.2)	(85.2)	(> 47.0)	(59.0)	(115.6)	(115.6)	(> 71.0)	(80.0)	
	>	< c	X		without screw		M12 × 90 R909154041		without screw		M12 × 100 R909153975		
Е	< 3.78	2.90	0.0	0.92	3.35	3.03	0.0	0.55	< 7.05	5.71	0.0	1.46	
	(< 62.0)	(47.5)	(0.0)	(15.0)	(85.2)	(77.0)	(0.0)	(9.0)	(< 115.6)	(93.5)	(0.0)	(24.0)	
		M10 × 60 R909154690		M10 × 60 R909154690		M12 × 60 R909083530		M12 × 60 R909083530		M12 × 70 R909085976		M12 × 70 R909085976	
F	< 3.78	2.90	> 0.92	1.86	3.35	3.03	> 0.55	1.71	< 7.05	5.71	> 1.46	2.90	
	(< 62.0)	(47.5)	(> 15.0)	(30.5)	(85.2)	(77.0)	(> 9.0)	(28.0)	(< 115.6)	(93.5)	(> 24.0)	(47.5)	
	M10 × 60 R909154690		M10 × 70 R909153779		M12 × 60 R909083530			M12 × 70 R909085976		M12 × 70 R909085976		× 80	
G	< 3.78	2.90	> 1.86	2.62	3.35	3.03	> 1.71	2.87	< 7.05	5.71	R9091	4.33	
G	(< 62.0)	(47.5)	(> 30.5)	(43.0)	(85.2)	(77.0)	(> 28.00)	(47.0)	(< 115.6)	(93.5)	> 2.90 (> 47.5)	(71.0)	
	M10		M10		M12		M12	, ,	M12		M12		
	R9091	54690	R909154058		R909083530		R909153075		R909085976		R909154041		
Н					3.35	3.03	> 2.87	3.60	< 7.05	5.71	> 4.33	4.88	
	>	x x		(85.2)	(77.0)	(> 47.0)	(59.0)	(< 115.6) (93.5)		(> 71.0) (80.0)			
	~				M12 × 60 R909083530		M12 × 90 R909154041		M12 × 70 R909085976		M12 × 100 R909153975		
J	< 2.90	2.01	0.0	0.92	< 3.03	2.28	0.0	0.55	< 5.71	4.33	K9091	1.46	
J	< 2.30 (< 47.5)		(0.0)		(< 77.0)		(0.0)		(< 93.5)		0.0	(24.0)	
		× 70	M10		M12		M12		M12 × 80		M12	× 70	
	R9091	53779	R9091	54690	R9090	85976	R9090	R909083530		R909153075		85976	
K	< 2.90 (< 47.5)	2.01 (33.0)	> 0.92 (> 15.0)	1.86 (30.5)	< 3.03 (< 77.0)	2.28 (58.0)	> 0.55 (> 9.0)	1.71 (28.0)	< 5.71 (< 93.5)	4.33 (71.0)	> 1.46 (> 24.0)	2.90 (47.5)	
						. ,		. ,				. ,	
	M10 × 70 R909153779		M10 × 70 R909153779		M12 × 70 R909085976		M12 × 70 R909085976		M12 × 80 R909153075		M12 × 80 R909153075		
L	< 2.90	2.01	> 1.86	2.62	< 3.03	2.28	> 1.71	2.87	< 5.71	4.33	> 2.90	4.33	
		(33.0)	(>30.5)		(< 77.0)	. ,	(> 28.00)			(71.0)	(> 47.5)	(71.0)	
	M10		M10		M12 × 70		M12 × 80		M12 × 80		M12 × 90		
	R9091	53779	R9091	54058	R9090		R9091		R9091		R9091		
М						2.28 (58.0)	> 2.87 (> 47.0)	3.60 (59.0)	< 5.71 (< 93.5)		> 4.33 (> 71.0)	4.88 (80.0)	
	>	K	x		M12		(× 47.0) M12		M12		M12 :		
					R9090		R9091		R9091		R9091		

Specify exact settings for $V_{g \min}$ and $V_{g \max}$ in plain text when ordering: $V_{g \min} = \dots \text{ in}^3$ (cm³), $V_{g \max} = \dots \text{ in}^3$ (cm³) Theoretical, maximum setting: \blacktriangleright for $V_{g \min} = 0.7 \times V_{g \max}$

• for
$$V_{g max} = 0.3 \times V_{g max}$$

Settings that are not listed in the table may lead to damage. Please contact us.

		1	50			1	70		215				
	Vg		Vg		Vg		Vg		V _{g max} V _{g min}				
	[in ³ /rev (d		[in ³ /rev (d		[in ³ /rev ([in ³ /rev (cm ³ /rev)]	[in ³ /rev (
	from	to	from	to	from	to	from	to	from	to	from	to	
Α	9.28	9.28	0.0	2.68	10.48	10.48	0.0	2.14	13.21	13.21	0.0	2.72	
	(152.1)	(152.1)	(0.0)	(44.0)	(171.8)	(171.8)	(0.0)	(35.0)	(216.5)	(216.5)	(0.0)	(44.5)	
		M12 × 80				M12	x 80			M12	× 80		
	without	t screw	R909153075		without screw		R9091	53075	withou	t screw	R909153075		
В	9.28	9.28	> 2.68	4.21	10.48	10.48	> 2.14	3.87	13.21	13.21	> 2.72	4.88	
	(152.1)	(152.1)	(> 44.0)	(69.0)	(171.8)	(171.8)	(> 35.0)	(63.5)	(216.5)	(216.5)	(> 44.5)	(80.0)	
	without	screw	M12 × 90		without	t screw	M12		withou	t screw	M12 × 90		
			R9091				R9091				R9091		
С	9.28	9.28	> 4.21	6.04	10.48	10.48	> 3.87	5.98	13.21	13.21	> 4.88	7.02	
	(152.1)	(152.1)	(> 69.0)	(99.0)	(171.8)	(171.8)	(> 63.5)	(98.0)	(216.5)	(216.5)	(> 80.0)	(115.0)	
	without	t screw	M12 > R9091		without	t screw	M12 × R9091		withou	t screw	M12 R9091		
D	9.28	9.28	> 6.04	6.04	10.48	10.48	> 5.98	9.15	13.21	13.21	> 7.02	9.15	
U	9.28	9.28 (152.1)	> 0.04 (> 99.0)	(106.0)	(171.8)	(171.8)	> 5.98 (> 98.0)	(120.0)	(216.5)	(216.5)	(> 115.0)	9.15 (150.0)	
	(102.1)	(102.1)	. ,	. ,	(1/1.0)	(1/1.0)	. ,	(2 98.0) (120.0) M12 × 110		(210.3) (210.3)		× 110	
	without	without screw		M12 × 110 R909154212		without screw		R909154212		without screw		R909154212	
Е	< 9.28	6.77	0.0	2.68	< 10.48	8.48	0.0	2.14	< 13.21	10.68	0.0	2.72	
_	(<152.1)	(111.0)	(0.0)	(44.0)	(< 171.8)	(139.0)	(0.0)	(35.0)	(< 216.5)	(175.0)	(0.0)	(44.5)	
	M12	× 80	M12	× 80	M12	× 80	M12	x 80	M12	× 80	M12	× 80	
	R9091	R909153075 R9091		53075	R909153075		R909153075		R909153075		R909153075		
F	< 9.28	6.77	> 2.68	4.21	< 10.48	8.48	> 2.14	3.87	< 13.21	10.68	> 2.72	4.88	
	(<152.1)	(111.0)	(> 44.0)	(69.0)	(< 171.8)	(139.0)	(> 35.0)	(63.5)	(< 216.5)	(175.0)	(> 44.5)	(80.0)	
	M12 × 80		M12 × 90		M12 × 80		M12 × 90		M12 × 80		M12 × 90		
	R9091		R9091		R9091		R9091		R9091		R9091		
G	< 9.28	6.77	> 4.21	6.04	< 10.48	8.48	> 3.87	3.86	< 13.21	10.68	> 4.88	7.02	
	(<152.1) M12	(111.0)	(> 69.0)	(99.0)	(< 171.8)	(139.0)	(> 63.5) M12 ;	(98.0)	(< 216.5)	(175.0)	(> 80.0)	(115.0)	
	R9091		M12 × 100 R909153975		M12 × 80 R909153075		R909153975		M12 × 80 R909153075		M12 × 100 R909153975		
н	< 9.28	6.77	> 6.04	6.47	< 10.48	8.48	> 3.86	7.32	< 13.21	10.68	> 7.02	9.15	
	(<152.1)	(111.0)	(> 99.0)	(106.0)	(< 171.8)	(139.0)	(> 98.0)	(120.0)	(< 216.5)	(175.0)	(> 115.0)	(150.0)	
	M12	× 80	M12 × 110		M12 × 80		M12 :	× 110	M12 × 80		M12 × 110		
	R9091	53075	R9091	54212	R9091	53075	R9091	54212	R9091	53075	R9091	54212	
J	< 6.77	5.31	0.0	2.68	< 8.48	6.83	0.0	2.14	< 10.68	8.60	0.0	2.72	
	(< 111.0)	(87.0)	(0.0)	(44.0)	(< 139.0)	(112.0)	(0.0)	(35.0)	(< 175.0)	(141.0)	(0.0)	(44.5)	
	M12		M12		M12 × 90		M10 x 80		M12 × 90		M12 × 80		
	R9091		R9091		R9091		R9091			54041	R9091		
K	< 6.77	5.31	> 2.68	4.21	< 8.48	6.83	> 2.14	3.87	< 10.68	8.60	> 2.72	4.88	
	(< 111.0)	(87.0)	(> 44.0)	(69.0)	(< 139.0)	(112.0)	(> 35.0)	(63.5)	(< 175.0)	(141.0)	(> 44.5)	(80.0)	
	M12 × 90 R909154041		M12 × 90 R909154041		M12 × 90 R909154041		M12 × 90 R909154041			M12 × 90 R909154041		× 90 54041	
L	< 6.77	5.31	> 4.21	6.04	< 8.48	6.83	> 3.87	5.98	< 10.68	8.60	> 4.88	7.02	
-	(< 111.0)	(87.0)	(> 69.0)	(99.0)	(< 139.0)	(112.0)	<pre>> 3.87 (> 63.5)</pre>	(98.0)	< 175.0)	(141.0)	(> 80.0)	(115.0)	
	M12		(* 00.0) M12 >			M12 × 90		(> 63.3) (98.0) M12 × 100		M12 × 90		× 100	
	R9091		R909153975		R909154041		R909153975		R909154041		R909153975		
М	< 6.77	5.31	> 6.04	6.47	< 8.48	6.83	> 5.98	7.32	< 10.68	8.60	> 7.02	9.15	
	(< 111.0)	(87.0)	(> 99.0)	(106.0)	(< 139.0)	(112.0)	(> 98.0)	(120.0)	(< 175.0)	(141.0)	(> 115.0)	(150.0)	
	M12	× 90	M12 >	< 110	M12	× 90	M12 >	× 110	M12	× 90	M12	× 110	
	R9091	54041	R9091	54212	R9091	54041	R9091	54212	R9091	54041	R9091	54212	

Specify exact settings for $V_{g \min}$ and $V_{g \max}$ in plain text when ordering: $V_{g \min} = \dots \text{ in}^3$ (cm³), $V_{g \max} = \dots \text{ in}^3$ (cm³) Theoretical, maximum setting: \blacktriangleright for $V_{g \min} = 0.7 \times V_{g \max}$

• for
$$V_{g max} = 0.3 \times V_{g max}$$

Settings that are not listed in the table may lead to damage. Please contact us.

Installation instructions

General

The axial piston unit must be filled with hydraulic fluid and air bled during commissioning and operation. This must also be observed following a longer standstill as the axial piston unit empty via the hydraulic lines.

Particularly in the installation position "drive shaft upwards", filling and air bleeding must be carried out completely as there is, for example, a danger of dry running. The leakage in the housing area must be directed to the reservoir via the highest drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the maximum permissible case pressure of all connected units is not exceeded at any operational conditions.

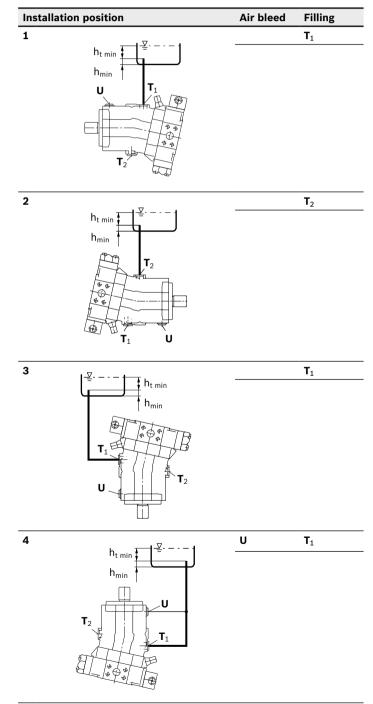
If this is not possible, separate drain lines must be laid. To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Note

In certain installation positions, an influence on the control characteristics can be expected. Gravity, dead weight and case pressure can cause minor shifts in control characteristic curves and changes in response time.

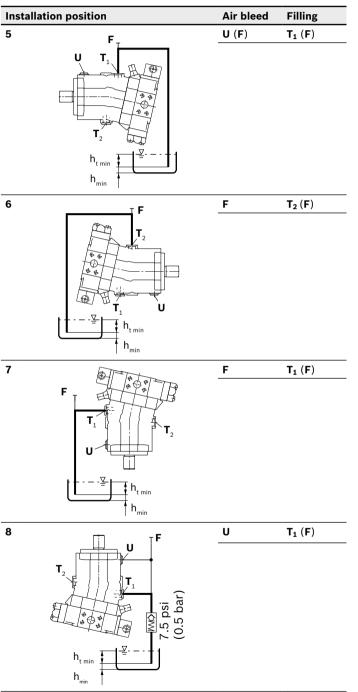
Key	
U	Bearing flushing / air bleed port
F	Filling / air bleeding
T ₁ , T ₂	Drain port
h _{t min}	Minimum required immersion depth (7.87 inch (200 mm))
h _{min}	Minimum required distance to tank base (3.94 inch (100 mm))


Installation position

See examples **1** to **8** below.

Additional installation positions are available upon request. Recommended installation position: **1** and **2**

Below-reservoir installation (standard)


Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir. Recommendation for installation position 8 (drive shaft upward):

A check valve in the drain line (cracking pressure 7.5 psi (0.5 bar)) can prevent draining of the motor housing.

Note

Port **F** is not part of the motor and can be provided by the customer to make filling and air bleeding easier.

74 **A6VM series 71** | Axial piston variable motor Project planning notes

Project planning notes

- The motor A6VM is designed to be used in open and closed circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified skilled person.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- Before finalizing your design, request a binding installation drawing.
- The data and notes contained herein must be adhered to.
- For safety reasons, control systems with beginning of control at V_{g min} (e.g. HA) are not permissible for winch drives (e.g. anchor winches)!
- Depending on the operating condition of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Preservation: Our axial piston units are supplied as standard with preservative protection for a maximum of 12 months. If longer preservative protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation times apply under optimal storage conditions, details of these conditions can be found in the data sheet 90312 or the instruction manual.
- Not all variants of the product are approved for use in safety functions according to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF_d) for functional safety.
- Depending on the type of control used, electromagnetic effects can be produced when using solenoids. Applying the recommended direct voltage signal (DC) to solenoids does not create electromagnetic interference (EMI) nor is the solenoid affected by EMI. Electromagnetic interference (EMI) potential exists when operating and controlling a proportional electrohydraulic coil with a Pulse Width Modulated (PWM) signal. Appropriate testing and measures should be taken by the machine manufacturer to ensure other components or operators (e.g. with pacemaker) are not affected by this potential.
- Please note the details regarding the tightening torques of port threads and other threaded joints

- Working ports
 - The ports and fixing threads are designed for the specified peak pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, volume flow, hydraulic fluid, temperature) with the required safety factors.
 - The service and function ports are only designed to accommodate hydraulic lines

Safety instructions

- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g., by wearing protective clothing).
- Moving parts in control equipment (e.g. valve pistons) can, under certain circumstances get blocked in position as a result of contamination (e.g. impure hydraulic fluid, abrasion, or residual dirt from components). As a result, the flow of hydraulic fluid and the build-up of momentum in the axial piston unit can no longer meet the operator's specifications. Even the use of various filter elements (external or internal flow filtering) cannot rule out errors, but can only help minimize risks. The machine/system manufacturer must check whether additional measures are required on the machine for the relevant application in order to bring the powered load into a safe position (e.g. safe stop) and ensure any measures are properly put into practice.
- In certain conditions, moving parts in high pressure relief valves might get stuck in an undefined position due to contamination. This can result in restriction or loss of load holding functions in lifting winches. Therefore it is the machine and/or system manufacturers responsibility to make sure that the load can always be put in a safe mode if needed. Also, he needs to ensure that these measures are properly implemented.
- When using the axial piston motor in winch drives, make certain that the technical limit values are not exceeded under all operating conditions. If the axial piston motor is extremely overloaded (e.g., if the maximum permissible rotational speeds are exceeded during weighing of the anchor while the ship is in motion), the rotary group may be damaged and, in the worst case, the axial piston motor may burst. The machine manufacturer / system manufacturer is to undertake additional measures, up to and including encapsulation.

76 **A6VM series 71** | Axial piston variable motor Project planning notes

Bosch Rexroth Corporation

Mobile Applications 8 Southchase Court Fountain Inn, SC 29644-9018, USA Telephone (864) 967-2777 Facsimile (864) 967-8900 www.boschrexroth-us.com © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth Corporation. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.