

Axial piston variable double pump A28VLO Series 10

RE 93110

Edition: 04.2016 Replaces: 12.2015

Sizes 280

- Nominal pressure 350 bar
- Maximum pressure 420 bar
- Open circuit

Features

- Variable axial piston double pump of swashplate design for hydrostatic drives in open circuit.
- For use preferably in mobile applications
- ► Flow is proportional to the drive speed and displacement.
- The flow can be infinitely varied by adjusting the swashplate angle.
- One suction port, two pressure ports.
- Special control devices program for mobile applications, with different control and regulation functions.
- Compact design
- High efficiency
- High power density
- Low noise level

Contents

Ordering code	2
Hydraulic fluids	5
Charge pump (impeller)	6
Operating pressure range	7
Technical data	8
Power control	11
Stroke control	18
Pressure controller	19
Dimensions, size 280	22
Connector for solenoids	28
Installation instructions	29
Project planning notes	31
Safety instructions	31

2 **A28VLO Series 10** | Axial piston variable double pump Ordering code

Ordering code

	01	02	03	04	05	06	07	08	09	10	11		12		13	14	15	16	17	18	19	20	21		22
A	28V	LO	280									1	10			R	V	E4		1	К0	0000	0	-	
Axia	al pisto	n unit	 :	•				•	. <u> </u>																
	Double			iable	e swas	hplate	desig	n																	A28V
	eration																						280		
02	1			it						w	ith ch	arge	pump										•	Γ	LO
Size	es (NG)	-																					1		
<u> </u>	Geom		lisplad	ceme	ent, se	e "Tec	hnical	data"	on pag	ge 8												_	280	٦	
L	L										e basi	ic cor	ntrolle	er c	an b	be co	mbine	d with	at mo	ost tw	vo		<u></u>	_	
Pun	np 1: co	ontrol	devic	es: l	basic	contro	ller			ad	dition	al co	ntroll	ers	(05	, 06,	07)								
04	Single	powe	er con	trol	fi	ed set	ting																•		LR
	ove	erride			el	ectric-	oropor	tional		ne	egativ	e con	trol			12 V							•		L3
					_										<i>U</i> =	24 V							•	┢	L4
					hy	draulio	c-prop	ortion	al,		egativ												•	┝	L5
	C	- 4 :									ositive												•	┢	L6
	Summ contro		powe	r		erride oporti	-		essure		egativ	e con	troi		WIT	h stoj	5						•		CR
					C	ombina	tion o	f CR a	nd L5 :	= C5													•		C5
	Pressu				fi	ed set	ting																•		DR
	one-si	de sw	iveling	80	in ex	ectric- tegrate :ternal pply	d pilo	t valve	for	p	ositive	e cont	rol		U =	24 V							o		D2 ²⁾
	Stroke	conti	rol ¹⁾		0\	rride				р	ositive	e cont	rol		U =	12 V							•		E1
					el	ectric-	oropor	tional							U =	24 V							•		E2
Pun	np 1: A	dditio	nal co	ontro	ol: Pre	ssure	contro	ller																	
05	Withou	ut add	litiona	al coi	ntrol (withou	ıt syml	ool)															•		
	with o	ne-sid	le swi	velin	g, fixe	ed setti	ng																•		DR
Pun	np 1: ac	ditio	nal co	ontro	l for l	oasic c	ontrol	ler L4	and Cl	R ¹⁾ : s	troke	cont	rol or	un	nload	ding									
06	Withou	ut add	litiona	al coi	ntrol (withou	ıt syml	ool)								-							•		
	Stroke	conti	rol		0\	rride	electri	c-prop	ortion	al po	ositive	e cont	rol		U =	12 V							•		E1
															U =	24 V							•		E2
	Stroke	conti	rol			draulio	· ·		al,	ne	egativ	e con	trol		An	= 20	har						•		H3
						ontrol p	oressu	re		р	ositive	e cont	rol		Δp	- 20	Dai						•		H4
						draulio	· ·		al,	ne	egativ	e con	trol		Λħ	= 35	bar						•		H5
					CC	ontrol p	oressu	re		р	ositive	e cont	rol		-p								•		H6
Pun	np 1: A	dditio	nal co	ontro	ol: loa	d sens	ing															_		_	
07	Withou	ut add	litiona	al coi	ntrol (withou	ıt syml	ool)															•		
	Load s	sensin	g, inte	ernal	pump	o press	ure, fiz	xed se	tting														•		S 0
Pun	np 2: co	ontrol	comb	oinat	ion																				
08	Identio	cal wit	th pur	np 1																			•		1
	Variou	s cont	trols,	plea	se cor	tact u	5																•		2

 The stroke control systems can be combined with either pressure controllers or load sensing controllers. A combination of all three controllers is not possible 2) Not combinable with other controllers

	01	(02	03	04	0)5	06	07	08	09	10	11		12	13	14	15	16	17	18	19	20	21	22
A	28	/ I	.0	280										1	10		R	V	E4		1	К0	0000	0	-
Dep	oress	surize	ed ba	asic p	oositi	ion a	and	exte	rnal c	ontrol	pres	sure s	upply	,										280	
09	Max	ximur	n sv	vivel a	angle	$(V_{g}$	max))			-														
		Witho	out e	xterr	nal co	ontro	ol pr	ressu	re sup	ply (s	tanda	rd for	powe	r and	press	ure co	ntrolle	ers)						•	Α
		With	exte	rnal (contr	ol pi	ress	sure s	upply	(integ	grated	shutt	le val	ve, st	andarc	for ne	egativ	e stro	ke cor	ntrol)				•	В
	Min	nimun	n sw	ivel a	ngle	(V_{g})	_{min})																	1	
		With	exte	rnal (contr	ol pi	ress	sure s	upply	(integ	grated	shutt	le val	ve, st	andarc	for po	ositive	e stroł	ke con	trol)				•	С
Cor	nnector for solenoids ³⁾ (see page 29)																								
10	Wit	Without connector (only for hydraulic controls)											•	0											
	DEI	JTSC	Н сс	nnec	tor																			•	Р
	AM	P cor	nec	tor (.	lunio	r-Tin	ner)	, 2-pi	n (on	y for l	D2 coi	ntrolle	er)											0	S
Swi	vel a	angle	indi	cato	r																				
11	Wit	hout	opti	cal s	wivel	ang	le ir	ndicat	tor															•	0
		h ele			el	_						Р	ower	supply	/ 5 V D	0								•	В
	<u> </u>	le sei ber da			0510	-						Р	owers	supply	/ 8 V - 3	32 V D	С								
	as	ber u	ald S	neet	9510	50																		•	к
Ser				0																					40
		ies 1	-																						10
				-				-	reads		<u></u>									0.0.1				1	<u> </u>
13					-				-		-				with O				•					0	A
	Met	tric, a	ill fa	steni	ng th	read	is a	ccord	ling to	DINI	L3, all	port	hread	is wit	h O-rir	g seal	acco	rding	to ISC	6149)			•	М
Dire	ectio	on of	rota	tion																					-
14	Wit	h vie	w or	driv	e sha	ıft						С	ockw	ise											R
Sea	ling	mate	rial																						
15	FKN	√ (flu	or-ca	aouto	houc	:)																			V
Мо	untir	ng fla	nges	5																					
		E J74	-			1	165-	-4																•	E4
Driv	/e sh	naft																							
17		ined	shaf	t ANS	SI B9:	2.1a						2	1/4 iı	ו 17T	8/16D	Ρ								•	Т3
	Spl	ined	shaf	t DIN	548	0						W	/60x2	x28x9)g									•	A4

• = Available • = On request - = Not available

3) Connectors for other electric components may deviate

4) Please contact us if the swivel angle sensor is used for control

4 **A28VLO Series 10** | Axial piston variable double pump Ordering code

01	02	03	04	05	06	07	08	09	10	11		12	13	14	15	16	17	18	19	20	21		22
A28V	LO	280									/	10		R	V	E4		1	К0	0000	0	-	

Service line port	280	
18 SAE service line port A , B at side, SAE-suction port S at bottom	•	1
Control fluid pump and pressure relief valve		
19 Without integrated control oil pump, without pressure-relief valve	•	ко
Through drive		
20 Without through drive ⁵⁾	•	0000
Speed sensor		
21 Without	•	0
Standard/special version		
22 Standard version		0
Special version		s

Note

- Note the project planning notes on page 32.
- In addition to the ordering code, please specify the relevant technical data when placing your order.
- = Available = On request = Not available

⁵⁾ With through drive on request

Hydraulic fluids

The A28V(L)O variable pump is designed for operation with HLP mineral oil according to DIN 51524.

Application instructions and requirements for hydraulic fluids should be taken from the following data sheets before the start of project planning:

- 90220: Hydraulic fluids based on mineral oils and related hydrocarbons
- ▶ 90221: Environmentally acceptable hydraulic fluids
- 90222: Fire-resistant, water-free hydraulic fluids (HFDR/HFDU)

Notes on selection of hydraulic fluid

The hydraulic fluid should be selected such that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} see selection diagram).

Note

At no point of the component may the temperature be higher than 115 °C. The temperature difference specified in the table is to be taken into account when determining the viscosity in the bearing.

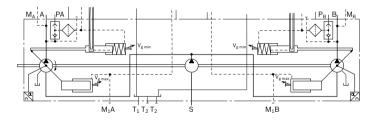
If the above conditions cannot be maintained due to extreme operating parameters, please contact the responsible member of staff at Bosch Rexroth.

Viscosity and temperature of hydraulic fluids

	Viscosity	Temperature	Comment
Cold start	$v_{\rm max} \le 1600 \ {\rm mm^2/s}$	$\theta_{St} \ge -40 \ ^{\circ}C^{1)}$	$t \leq 3$ min, without load (20 bar $\leq p \leq 50$ bar, $n \leq 1000$ rpm
Permissible t	emperature difference	<i>ΔT</i> ≤ 25 K	between axial piston unit and hydraulic fluid
Warm-up phase	v < 1600 to 400 mm ² /s	θ = -40 °C to -25 °C	at $p \le 0.7 \times p_{\text{nom}}$, $n \le 0.5 \times n_{\text{nom}}$ and $t \le 15$ min
Continuous operation	v = 400 to 10 mm ² /s		This corresponds, for example on the VG 46, to a temperature range of +5 °C to +85 °C (see selection diagram)
		θ = -25 °C to +110 °C	measured at port T Note the permissible temperature range of the shaft seal (ΔT = approx. 5 K between bearing/shaft seal and port T)
	v_{opt} = 36 to 16 mm ² /s		Range of optimum operating viscosity and efficiency
Short-term operation	$v_{min} \ge 7 \text{ mm}^2/\text{s}$		$t < 3 \min, p < 0.3 \times p_{nom}$

Selection diagram

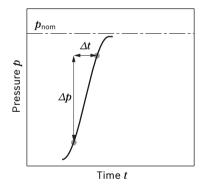
 At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range -40 °C bis +90 °C)

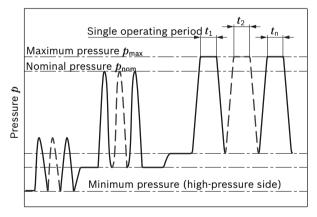

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

In order to guarantee the functional reliability of the axial piston unit it is necessary to carry out a gravimetric evaluation of the hydraulic fluid to determine the particle contamination and the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 must be maintained. At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness class of at least 19/17/14 according to ISO 4406 is necessary. Please contact us if the above classes cannot be observed.

Charge pump (impeller)


The charge pump is a circulating pump with which the A28VLO 280 is filled and therefore can be operated at higher speeds. This also simplifies cold starting at low temperatures and high viscosity of the hydraulic fluid. Externally increasing the inlet pressure is therefore unnecessary in most cases. Charging the reservoir with compressed air is not permissible.


Operating pressure range

Pressure at working line port A		Definition
Nominal pressure $p_{\sf nom}$	350 bar	The nominal pressure corresponds to the maximum design pressure.
Maximum pressure p_{\max}	420 bar	The maximum pressure corresponds to the maximum working pressure within the single operating period. The sum of the single operating periods must not
Single operating period	10 s	exceed the total operating period.
Total operating period	300 h	
Minimum pressure $p_{A abs}$ (high-pressure side)	15 bar	Minimum pressure on the high-pressure side (A) which is required in order to prevent damage to the axial piston unit. The minimum pressure depends on the rotational speed and the swivel angle (see diagram).
Rate of pressure change $R_{A \max}$	16000 bar/s	Maximum permissible rate of pressure build-up and pressure reduction during a pressure change over the entire pressure range.
Pressure at suction port S (inlet)		
Minimum pressure $p_{ m Smin}$	≥ 0.7 bar absolute	Minimum pressure at suction port S (inlet) that is required in order to avoid damage to the axial piston unit. The minimum pressure depends on the speed
Maximum pressure $p_{ m Smax}$	≤ 2 bar absolute	and displacement of the axial piston unit.
Drain pressure at port T ₁ , T ₂ , T ₃		
Maximum pressure $p_{L \max}$	4 bar	Maximum 1.2 bar higher than inlet pressure at port S , but not higher than $p_{L max.}$ A case drain line to the reservoir is required.
Peak Pressure $p_{L peak}$	7 bar	t< 0.1 s

▼ Rate of pressure change R_{A max}

▼ Pressure definition

Time t Total operating period = $t_1 + t_2 + \dots + t_n$

Note

Operating pressure range valid when using hydraulic fluids based on mineral oils. Values for other hydraulic fluids, please contact us.

8 **A28VLO Series 10** | Axial piston variable double pump Technical data

Technical data

With charge pump (A28VLO)

Size			NG		280
Displacement, geom	netric, per revolution by rotary	y group	$V_{\rm g\ max}$	cm ³	280
		-	$V_{{ m g\ min}}$	cm ³	0
Maximum rotation-	at $V_{g max}^{2)}$		$n_{\sf nom}$	rpm	1900
al speed ¹⁾	at $V_{g} \leq V_{g \max}^{3}$		n_{\max}	rpm	1900
Flow	at $n_{ m nom}$ and $V_{ m gmax}$		q_{v}	L/min	2 x 532
Power	at $n_{ m nom}$, $V_{ m gmax}$ and $\varDelta p$ = 350	bar	Р	kW	2 x 310
Torque	at $V_{\rm gmax}$ and Δp = 350 bar ²⁾		Т	Nm	2 x 1560
Rotary stiffness	2 1/4 in 17T 8/16DP T3		с	kNm/rad	519
drive shaft	W60x2x28x9g A4		с	kNm/rad	645
Moment of inertia re	otary group		J _{TW}	kgm²	0.198
Maximum angular a	cceleration ⁴⁾		α	rad/s²	4200
Case volume			V	L	9.5
Weight (without thr	ough drive) approx.		m	kg	305

Detern	nining th	e operating characteristics						
Flow		$q_{\rm v} = \frac{V_{\rm g} \times n \times \eta_{\rm v}}{1000}$	[l/min]					
Torque		$T = \frac{V_{g} \times \Delta p}{20 \times \pi \times \eta_{hm}}$	[Nm]					
Power		$P = \frac{2 \pi \times T \times n}{q_v \times \Delta p} = \frac{q_v \times \Delta p}{q_v \times \Delta p}$	— [kW]					
FOWEI		$r = 60000 - 600 \times \eta_{t}$						
Key								
V_{g}	=	Displacement per revolution [cm ³]						
Δp	=	Differential pressure [bar]						
n	=	Rotational speed [rpm]						
η_{v}	=	Volumetric efficiency						
$\eta_{ m hm}$	=	Hydraulic mechanical efficiency						
$\eta_{ m t}$	=	Total efficiency ($\eta_t = \eta_v \times \eta_{hm}$)						

1) The values are applicable:

- for the optimum viscosity range from v_{opt} = 36 to 16 mm²/s

- with hydraulic fluid on the basis of mineral oils

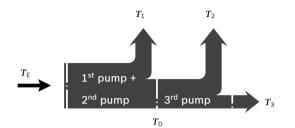
2) The values apply at absolute pressure $p_{\rm abs}$ = 1 bar at suction port **S**.

³⁾ Maximum rotational speed (rotational speed limit) in the case of increasing the inletpressure p_{abs} at suction port **S** and $V_g < V_{g max}$.

⁴⁾ The data are valid for values between the minimum required and maximum permissible speed. Valid for external excitation (e. g. diesel engine 2 to 8 times rotary frequency; cardan shaft twice the rotary frequency). The limiting value is only valid for a single pump. The load capacity of the connection parts must be considered.

Size	NG		280	280
Drive shaft			2 1/4	W60
Maximum radial force at distance a	F _{q max}	Ν	18000	23600
(from shaft collar)	a	mm	40	29
Maximum axial force	+ $F_{\text{ax max}}$	Ν	1800	1800
	- F _{ax max}	Ν	850	850

Permissible radial and axial forces of the drive shafts


Note

- Theoretical values, without efficiency and tolerances; values rounded
- Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. We recommend testing the loads by means of experiment or calculation / simulation and comparison with the permissible values.
- Special requirements apply in the case of belt drives.
 Please contact us.

Permissible input torques

Size			NG		280	
Torque at $V_{g max}$ a	and Δp = 350 bar ¹⁾		$T_{\sf max}$	Nm	3120	
Input torque at d	rive shaft, maximum ²	2)				
	Т3	2 1/4 in	$T_{E\ max}$	Nm	4380	
	A4	W60	T _{E max}	Nm	5780	
Maximum throug	h-drive torque		T_{Dmax}	Nm	-	

Distribution of torques

Torque at 1 st pump + 2 nd pump	<i>T</i> ₁
Torque at 3 rd pump	T_2
Torque at 4 th pump	T_3
Input torque	$T_E = T_1 + T_2 + T_3$
	$T_E < T_{E max}$
Through-drive torque	$T_D = T_2 + T_3$
	$T_D < T_{D max}$

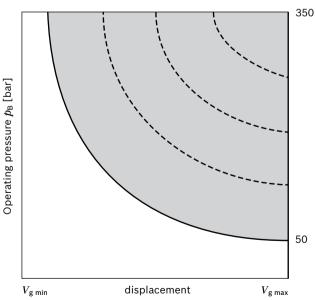
¹⁾ Efficiency not considered

²⁾ For drive shafts free of radial force

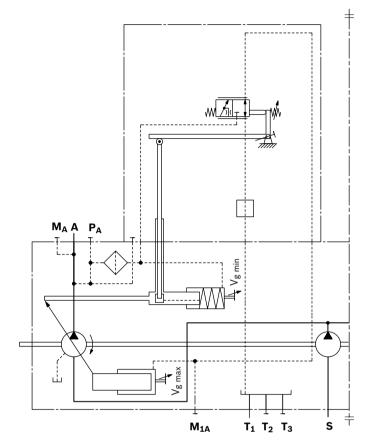
Power control

LR - Power controller, fixed setting

The power controller regulates the displacement of the pump depending on the operating pressure so that a given drive power is not exceeded at constant drive speed. The precise control with a hyperbolic control characteristic, provides an optimum utilization of available power. The operating pressure acts on a rocker via a measuring piston moved together with the control. An externally adjustable spring force counteracts this, it determines the power setting. The depressurized basic position is $V_{g max}$. If the operating pressure exceeds the set spring force, the control valve will be actuated by the rocker and the pump will swivel back from the basic setting $V_{g max}$ toward $V_{g min}$. Here, the leverage at the rocker may be shortened and the operating pressure may rise in the same relation as the displacement is reduced ($p_{\rm B} \times V_{\rm g}$ = constant; $p_{\rm B}$ = operating pressure; V_{g} = displacement).


The hydraulic output power (characteristic LR) is influenced by the efficiency of the pump.

Setting range for beginning of control 50 to 350 bar When ordering, state in plain text:


- Drive power P [kW]
- Drive speed n [rpm]
- ▶ Maximum flow *q*_{V max} [l/min]

Please contact us if you need a power diagram.

Characteristic LR

Circuit diagram LR

Illustrated for purposes of clarity, only pump A

L3/L4 – Power controller, electric-proportional override (negative control)

A control current acts against the adjustment spring of the power control via a proportional solenoid.

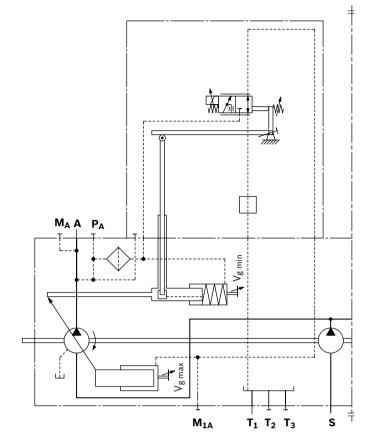
The mechanically adjusted basic power setting can be reduced by means of different control current settings. Increasing control current = reduced power.

If the pilot control signal is variably controlled via a load limiting control, the power draw of all consumers is adjusted to the power draw possible for the diesel engine (e.g. electronic load limiting control LLC (data sheet 95310) in BODAS controller RC2-2).

Technical data, solenoid	L3	L4
Voltage	12 V (±20%)	24 V (±20%)
Control current		
Beginning of control	400 mA	200 mA
End of control	1200 mA	600 mA
Limiting current	1.54 A	0.77 A
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω
Dither frequency	100 Hz	100 Hz
Duty cycle	100%	100%
Type of protection: see connector	version page 29	

When ordering, state in plain text:

- Drive power P [kW] at beginning of control
- Control current I [mA] at drive power P [kW]
- ▶ Drive speed *n* [rpm]
- Maximum flow q_{V max} [l/min]


• Effect of power override through current increase

Note

In operating condition **L3** de-energized (jump 400 to 0 mA): Power increase by a factor of 2 of the table values. In operating condition **L4** de-energized (jump 200 to 0 mA): Power increase by a factor of 1 of the table values.

Circuit diagram L4

Illustrated for purposes of clarity, only pump A

Reduction of power by control current to the proportional solenoids with **L3**¹⁾ **Power reduction/control current** [kW /100 mA]

Rotational speed [rpm]				
Size	1000	1500	1800	
280	11.4	17.1	20.5	

Reduction of power by control current to the proportional solenoids with **L4**¹⁾

Power reduction/control current [kW/100 mA]

Rotational speed [rpm]				
Size	1000	1500	1800	
280	22.9	34.4	41.2	

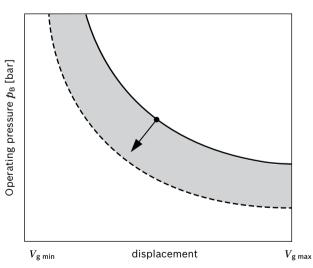
1) Values in the tables are reference points. Determination of the exact power override on request.

L5 – Power controller, hydraulic-proportional override (negative control)

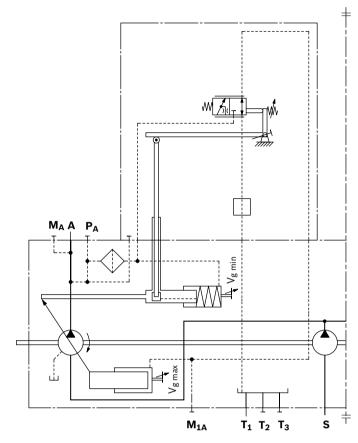
A pilot pressure acts against the adjustment spring of the power control via a valve.

The mechanically adjusted basic power setting can be reduced by means of different pilot pressure settings. Increasing pilot pressure = reduced power.

 Maximum permissible pilot pressure p_{St max} = 100 bar If the pilot pressure signal is adjusted by a load limiting control, the power reduction of all consumers is reduced to match the available power from the diesel engine.
 Reduction of power by pilot pressure at port L5
 Power reduction/pilot pressure [kW/bar]


	Rotational speed [rpm]				
Size	1000	1500	1800		
280	4.4	6.6	7.9		

Values in the tables are reference points. Determination of the exact power override on request.


When ordering, state in plain text:

- Drive power P [kW] at beginning of control
- ▶ Pilot pressure *p*_{st} [bar] in **L5** at drive power *P*[kW]
- Drive speed n [rpm]
- Maximum flow q_{V max} [l/min]

Effect of power override through pilot pressure increase

Circuit diagram L5

Illustrated for purposes of clarity, only pump A

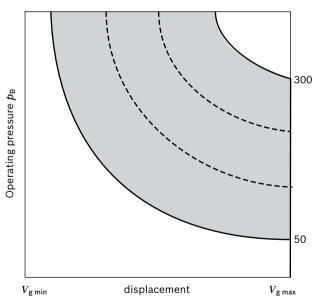
Change in beginning of control in bar when pilot pressure is changed from minimum to maximum.

The factor pilot pressure to beginning of control is 1:7.

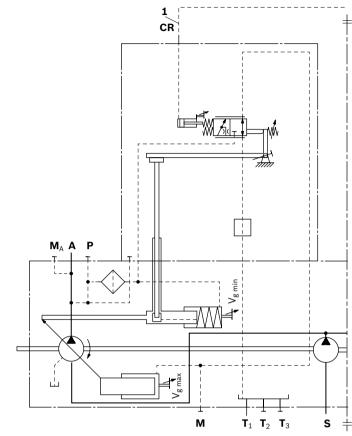
CR – Summation hp-control of two power-controlled pumps, high-pressure-related override (with stop)

With two pumps of the same size working in different circuits, the CR controller limits the overall power. The CR works like the normal LR with a fixed maximum power setting along the power hyperbola. The high-pressure-related override reduces the power setpoint in dependence on the operating pressure of the other pump. That happens proportionally below the beginning of control and is blocked by a stop when the minimum power is reached. Here, the **CR** port of the one pump has to be connected to the **M**_A port of the other pump.

The maximum power of the first pump is reached when the second pump is working at idle when depressurized. When defining the maximum power, the idle power of the second pump has to be taken into account.

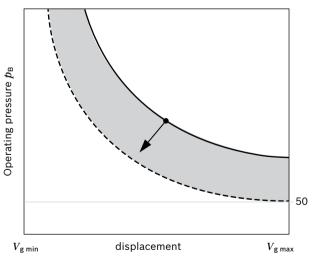

The minimum power of each pump is reached when both pumps are working at high pressure. The minimum power usually equates to 50% of the total power.

Power that is released by the pressure control or other overrides remains unconsidered.


Setting range for beginning of control is 50 bar to 300 bar. When ordering, please specify separately for each pump:

- ▶ Maximum drive power P_{max} [kW]
- ▶ Minimum drive power *P*_{min} [kW]
- ▶ Drive speed *n* [rpm]
- Maximum flow q_{V max} [l/min]

Characteristic CR



▼ Circuit diagram CR

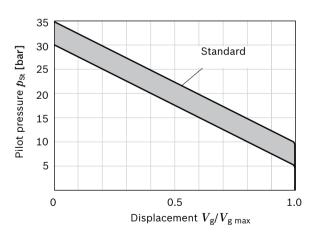
Piping is not included in the scope of delivery.
 Illustrated for purposes of clarity, only pump A

 Effect of power override of a pump with increasing pressure in the 2nd pump

▼ Circuit diagram H3

H3 – Stroke control, hydraulic-proportional, pilot pressure (negative control)

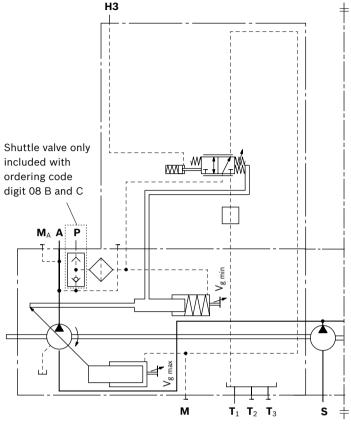
With pilot-pressure-related control, the pump displacement is adjusted in proportion to the pilot pressure applied at port **H3**.


Basic position without pilot signal is $V_{g max}$. Mechanically depressurized basic position is $V_{g max}$ (see ordering code digit 09, letter B).

- Adjustment from V_{g max} to V_{g min}
 With increasing pilot pressure, the pump swivels to a smaller displacement.
- Setting range for beginning of control (at V_{g max})
 5 bar to 10 bar, standard is 10 bar. State beginning of control in plain text in the order.

• Maximum permissible pilot pressure $p_{St max} = 100$ bar The necessary control fluid is taken from the operating pressure or the external control pressure applied to port **P**. If the pump is to be adjusted from the basic position $V_{g min}$ or from a low operating pressure, port **P** must be supplied with an external control pressure of at least 30 bar, maximum 50 bar.

Note


If no external control pressure is applied to **P**, the version "Maximum swivel angle ($V_{g max}$), without external control pressure supply" is to be ordered (see ordering code 09, letter A).

▼ Characteristic H3 (negative)

Increase in pilot pressure $V_{g max}$ to $V_{g min}$: Δp = 25 bar When ordering, state in plain text:

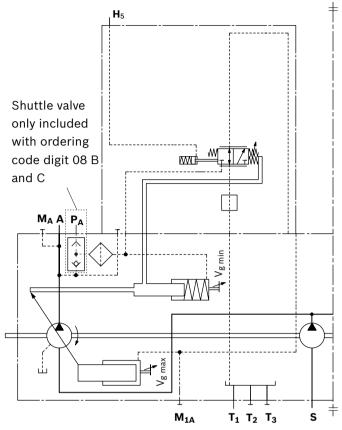
▶ Beginning of control [bar] at V_{g max}

Illustrated for purposes of clarity, only pump A

H5 – Stroke control, hydraulic-proportional, pilot pressure (negative control)

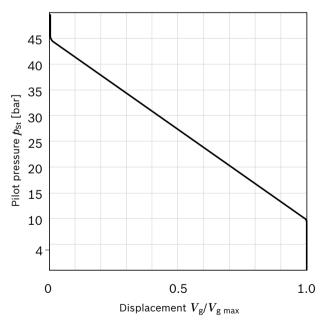
With pilot-pressure-related control, the pump displacement is adjusted in proportion to the pilot pressure applied at port **H5**.

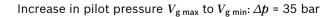
Basic position without pilot signal is $V_{g max}$, which includes the mechanically depressurized basic position $V_{g max}$ (see ordering code digit 08).


- Maximum permissible pilot pressure p_{St max} = 100 bar
- Adjustment from V_{g max} to V_{g min}
 With increasing pilot pressure, the pump swivels to a smaller displacement.
- Beginning of control (at $V_{g max}$) 10 bar

The necessary control power is taken from the operating pressure or the external control pressure applied to port **P**. If the pump is to be adjusted at low operating pressure, port **P** must have an external control pressure supply of at least 30 bar, maximum 50 bar.

Note


If no external control pressure is applied to **P**, the version "Maximum swivel angle ($V_{g max}$), without external control pressure supply" is to be ordered (see ordering code digit 08, A).


Circuit diagram H5

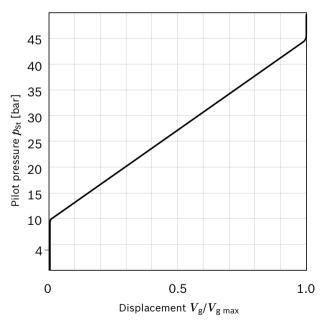
Illustrated for purposes of clarity, only pump A

Characteristic H5 (negative)

H6 – Stroke control, hydraulic-proportional, pilot pressure (positive control)

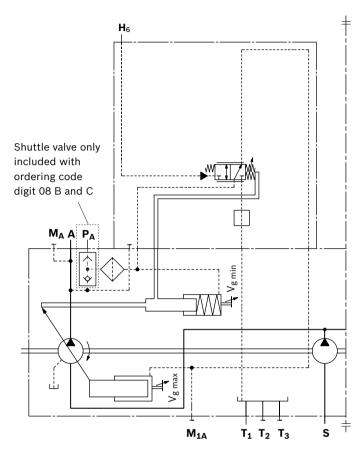
With pilot-pressure-related control, the pump displacement is adjusted in proportion to the pilot pressure applied at port **H6**.

Basic position without pilot signal is $V_{g \min}$, which includes the mechanically depressurized basic position $V_{g \min}$ (see ordering code digit 08).


- Maximum permissible pilot pressure p_{St max} = 100 bar
- Adjustment from V_{g min} to V_{g max}
 With increasing pilot pressure the pump swivels to a larger displacement.
- Beginning of control (at $V_{g min}$) 10 bar.

The necessary control power is taken from the operating pressure or the external control pressure applied to port **P**. If the pump is to be adjusted from the zero basic setting or from a low operating pressure, port **P** must be supplied with an external control pressure of at least 30 bar, maximum 50 bar.

Note


If no external control pressure is applied to **P**, the version "Maximum swivel angle ($V_{g max}$), without external control pressure supply" is to be ordered (see ordering code digit 08, A).

Characteristic H6 (positive)

Increase in pilot pressure $V_{g \min}$ to $V_{g \max}$: Δp = 35 bar

Circuit diagram H6

Illustrated for purposes of clarity, only pump A

Stroke control

E1/E2 – Stroke control, electric, proportional (positive control)

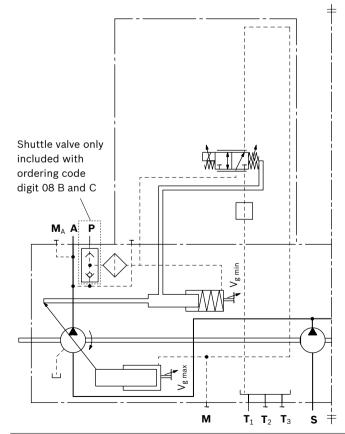
With the electrical stroke limiter with proportional solenoid, the pump displacement is steplessly adjusted in proportion to the current via the magnetic force. Basic position without pilot signal is $V_{g min}$, which includes the mechanically depressurized basic position $V_{g min}$ (see ordering code digit 08).

With increasing control current the pump swivels to a higher displacement (from $V_{g min}$ to $V_{g max}$).

The necessary control fluid is taken from the operating pressure or the external control pressure applied to port **P**. If the pump is to be adjusted from the basic position $V_{g min}$ or from a low operating pressure, port **P** must be supplied with an external control pressure of at least 30 bar, maximum 50 bar.

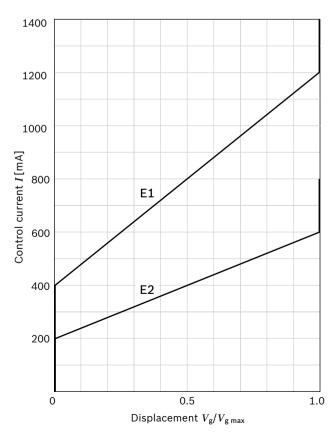
Note

If there is no external control pressure applied to \mathbf{P} , the version "Maximum swivel angle ($V_{g max}$), without external control pressure supply" must be ordered (see ordering code digit 08, A).


BODAS RC controllers with application software and analog amplifier RA are available for controlling the proportional solenoids.

Further information can also be found on the Internet at www.boschrexroth.com/mobile-electronics.

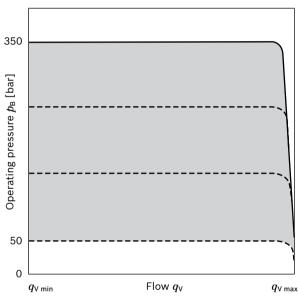
Technical data, solenoid	E1	E2		
Voltage	12 V (±20%)	24 V (±20%)		
Control current				
Beginning of control at $V_{g min}$	400 mA	200 mA		
End of control at $V_{g max}$	1200 mA ¹⁾	600 mA ²⁾		
Limiting current	1.54 A	0.77 A		
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω		
Dither frequency	100 Hz	100 Hz		
Duty cycle	100%	100%		
Type of protection: see connector version page 29				


When ordering, state in plain text:

- ▶ Drive speed *n* [rpm]
- Maximum flow q_{V max} [I/min]
- Minimum flow $q_{V \min}$ [l/min]
- ▼ Circuit diagram E1/E2

- 1) Because of the control hysteresis, a control current of up to 1300 mA may be required for the $V_{g max}$ position.
- $_{\rm 2)}\,$ Because of the control hysteresis, a control current of up to 650 mA may be required for the V_g $_{\rm max}$ position.

▼ Characteristic E1/E2

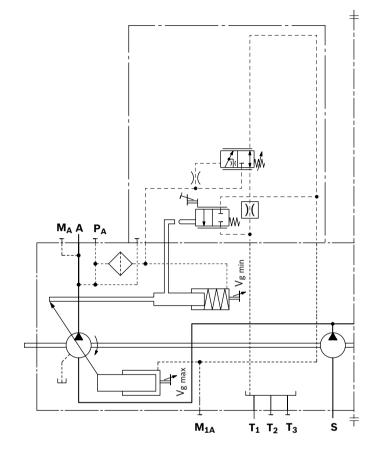

Circuit diagram DR

Pressure controller

DR – Pressure controller with one-sided swiveling, fixed setting

The pressure controller limits the maximum pressure at the pump outlet within the control range of the variable pump. The variable pump only supplies as much hydraulic fluid as is required by the consumers. If the operating pressure exceeds the pressure setting at the pressure valve, the pump will regulate to a smaller displacement to reduce the control differential.

- ► Initial position in depressurized state: Vg max
- Setting range for pressure control: 50 to 350 bar.


▼ Characteristic DR

Hydraulic $V_{g \min}$ stop

The hydraulic $V_{\rm g\,min}$ stop opens the valve outlet to the case drain chamber when a minimum position is reached, damping the controller and reducing overshoot. This can cause a connection from high pressure or external control pressure via the controller and the hydraulic $V_{\rm g\,min}$ stop to the case drain chamber.

When ordering, state in plain text:

Pressure setting p [bar] at pressure controller DR

Illustrated for purposes of clarity, only pump A

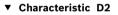
D2 – Proportional pressure control with one-side swiveling, electric override (M2 with two-side swiveling) (positive control)

The pressure controller keeps the pressure in a hydraulic system constant within its control range even under varying flow conditions. The variable pump only supplies as much hydraulic fluid as is required by the consumers. If the operating pressure exceeds the setting at the integrated pressure control valve, the pump is automatically swiveled back to reduce the control differential.

- ► Initial position in depressurized state: Vg max
- Pressure controller basic setting: 32 bar/300 mA

The basic setting of the pressure controller can be overridden. The pressure control value is proportional to the electrical current acting on the solenoids of the pressure reducing valve.

- Pressure setting overridden: 32 bar/300 mA to 350 bar/750 mA
- Auxiliary pressure for controlling D2 at port Y:

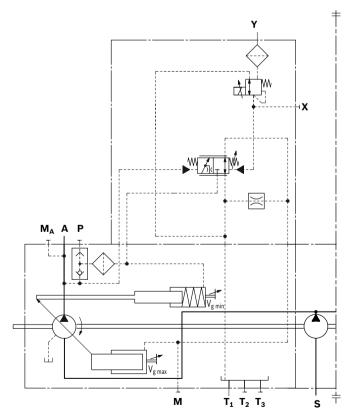

 p_{\min} = 40 bar; p_{\max} = 50 bar.


Port **X** acts solely as a measuring port (p_{max} 50 bar). Pressurization leads to an impermissible increase in pressure.

Notice

Applying current above the limit of 750 mA to the proportional solenoid results in an impermissible increase in pressure.

Make sure that currents above the permissible limit are not applied to the proportional solenoid.



Technical data, solenoid	D2	D2		
Voltage	24 V	24 V		
Control current				
Beginning of control at V_{gmin}		300 mA		
End of control at $V_{g\;max}$		750 mA		
Current limit	750 mA	750 mA		
Nominal resistance (at 20 °C (68 °F))	12 Ω	12 Ω		
Dither frequency	200 Hz	200 Hz		
Duty cycle	100%	100 %		
Type of protection: see connector version page 63				

The following electronic controllers and amplifiers are available for controlling the proportional solenoids:

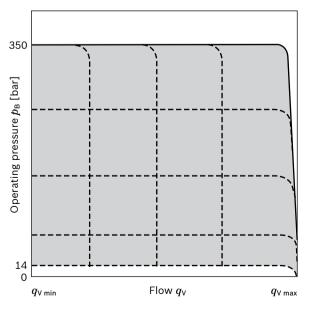
BODAS RC controllers Series	Data sheet
20	95200
21	95201
22	95202
30	95203
and application software	95230
Analog amplifier RA	95230

Circuit diagram D2

DRS0 - Pressure control with load sensing

The load sensing controller works as a load-pressure controlled flow controller and adjusts the displacement of the pump to the volume required by the consumer. The flow of the pump is then dependent on the cross section of the external metering orifice (1), which is located between the pump and the consumer. Below the setting of the pressure controller and within the control range of the pump, the flow is not dependent on the load pressure. The metering orifice is usually a separately located load sensing directional valve (control block). The position of the directional valve spool determines the opening cross-section of the metering orifice and thus the flow of the pump. The load sensing controller compares pressure before and after the sensing orifice and keeps the pressure drop (differential pressure Δp) across the orifice – and therefore the flow - constant.

If the differential pressure Δp at the metering orifice rises, the pump is swiveled back (toward $V_{g min}$). If the differential pressure Δp drops, the pump is swiveled out (toward $V_{g min}$) until equilibrium at the metering orifice is

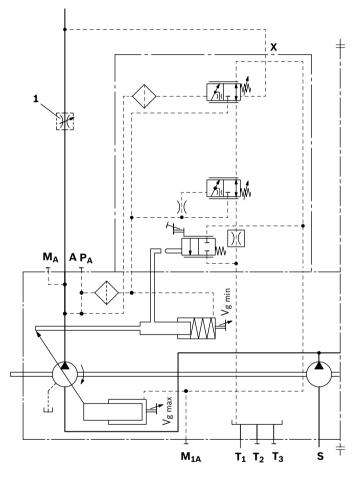

(toward $V_{\rm g max}$) until equilibrium at the metering orifice is restored.

$\Delta p_{ m measuring \ orifice}$ = $p_{ m pump}$ – $p_{ m consumer}$

- Setting range for ∆p 14 to 30 bar (please state in plain text)
- Standard adjustment 14 bar

The stand-by pressure in zero stroke operation (metering orifice closed) is slightly higher than the Δp -setting.

Characteristic DRS0



Hydraulic $V_{g min}$ stop

The hydraulic $V_{\rm g\,min}$ stop opens the valve outlet to the case drain chamber when a minimum position is reached, damping the controller and reducing overshoot. This can cause a connection from high pressure or external control pressure via the controller and the hydraulic $V_{\rm g\,min}$ stop to the case drain chamber.

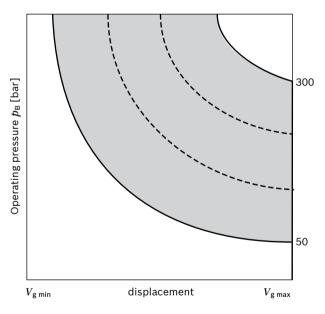
When ordering, state in plain text:

- Pressure setting p [bar] at pressure controller DR
- Differential pressure Δp [bar] at load sensing controller S0
- Circuit diagram DRS0

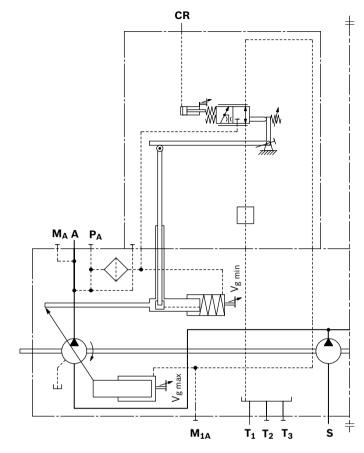
Illustrated for purposes of clarity, only pump A

1 The measuring orifice (control block) is not included in the scope of delivery.

C5H3 – Cross-sensing control with power-controlled double pumps, stroke control, hydraulic-proportional, pilot-pressure related

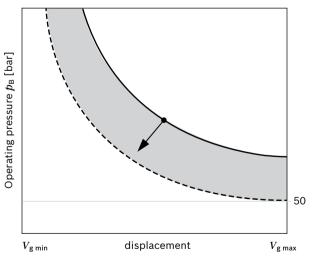

The method of function is made up of controllers L5 and CR to C5.

For the operation, refer to chapters "L5 – Power controller, hydraulic-proportional override (negative control)" on page 13 and "CR – Summation hp-control of two powercontrolled pumps, high-pressure-related override (with stop)" on page 14.

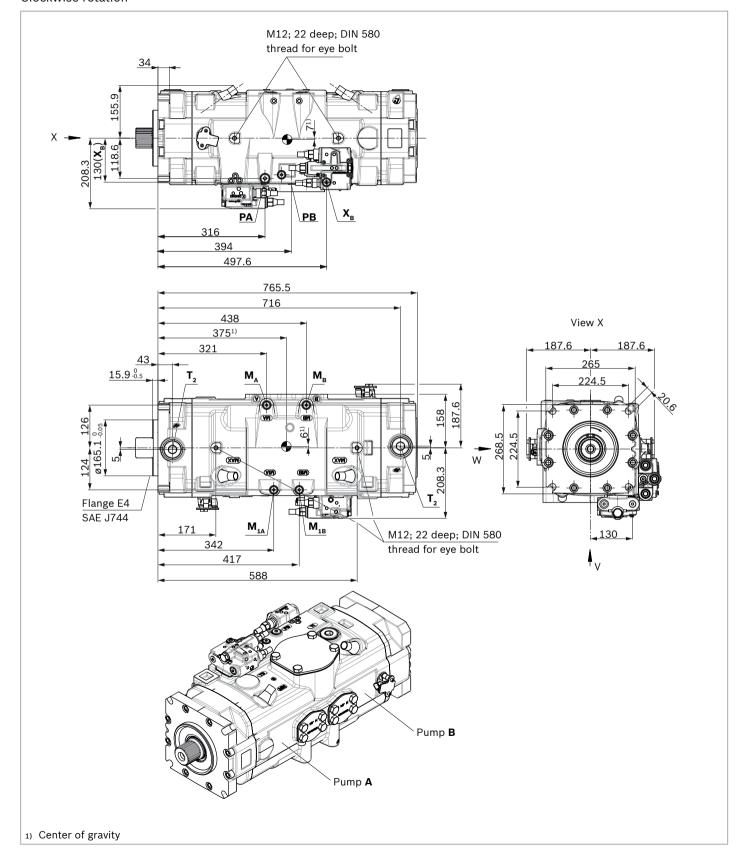

The function of H3 controller "H3 – Stroke control, hydraulic-proportional, pilot pressure (negative control)" can be found on page 15.

Setting range for beginning of control 50 to 300 bar When ordering, please specify:

- ► Maximum drive power P_{max} [kW]
- ▶ Minimum drive power *P*_{min} [kW]
- Drive speed n [rpm]
- ▶ Maximum flow *q*_{V max} [L/min]
- Characteristic CR

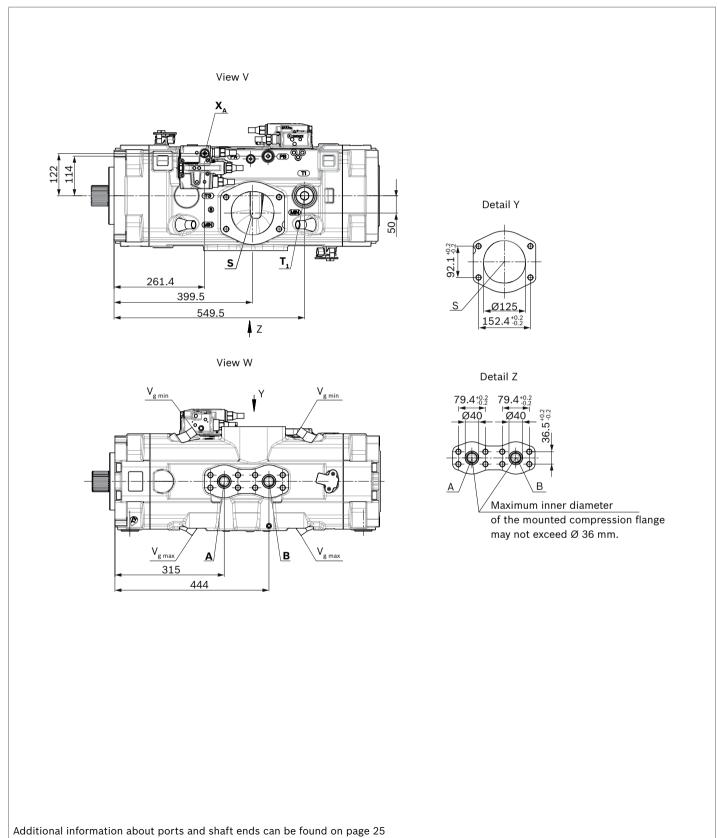


▼ Circuit diagram CR



Illustrated for purposes of clarity, only pump A

 Effect of power override of a pump with increasing pressure in the 2nd pump

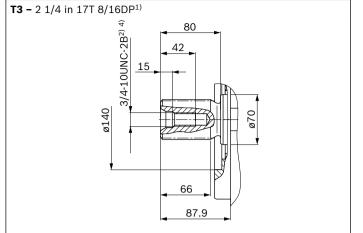

Dimensions, size 280

LRDRS0 – Power controller with pressure controller, load sensing and with electric swivel angle sensor (Part 1/2) Clockwise rotation

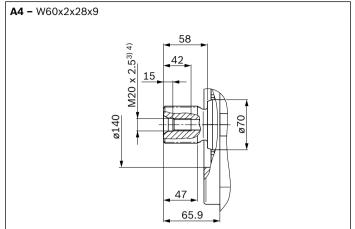
LRDRS0 - Power controller with pressure controller, load sensing and with electric swivel angle sensor (Part 2/2)

Clockwise rotation

SAE-version


Ports			Standard	Size ²⁾	p _{max abs} [bar] ⁷⁾	State ⁹⁾	
Pump A	Pump B					Pump A	Pump B
A	В	Service line port Fastening thread	SAE J518 ⁵⁾ ASME B1.1	1 1/2 in 5/8-11UNC-2B; 35 deep	420	0	0
S		Suction port Fastening thread	SAE J518 ⁵⁾ ASME B1.1	5 in 5/8-11UNC-2B; 35 deep	30	0	
T ₁	-	Drain port	ISO 11926 ⁶⁾	1 5/8; 19.5 deep	10	X ⁸⁾	-
T ₂	T ₂	Drain port	ISO 11926 ⁶⁾	1 5/8; 19.5 deep	10	O ⁸⁾	O ⁸⁾
CR	CR	Pilot signal (only at CR)	ISO 11926	9/16-18UNF-2B; 13 deep	420	0	0
н.	Н.	Pilot signal (only at H3, H4, H5, H6)	ISO 11926	9/16-18UNF-2B; 13 deep	100	0	0
L.	L.	Override power control (only at L3, L4. L5, L6)	ISO 11926	9/16-18UNF-2B; 13 deep	100	0	0
\mathbf{M}_{1A}	M _{1B}	Measuring, control pressure	ISO 11926 ⁶⁾	9/16-18UNF-2B; 13 deep	420	Х	Х
M _A	M _B	Measuring, operating pressure A, B	ISO 11926 ⁶⁾	9/16-18UNF-2B; 13 deep	420	Х	Х
P _A	P _B	External control pressure (Ordering code digit 9 version B or C = with external control pressure supply)	ISO 11926 ⁶⁾	9/16-18UNF-2B; 13 deep	50	0	0
		Port P is without function (Ordering code digit 9 version A = without external control pressure supply)	ISO 11926 ⁵⁾	3/4-16UNF-2B; 12.5 deep	420	X	X

Metric version

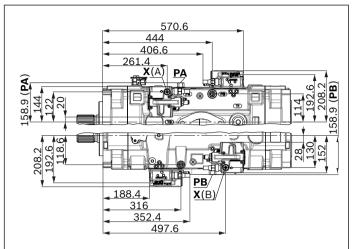

Ports			Standard	Size ²⁾	$p_{ m max\ abs}$ [bar] ⁷⁾	State ⁹⁾	
Pump A	Pump B					Pump A	Pump B
Α	В	Service line port Fastening thread	SAE J518 ⁵⁾ DIN 13	1 1/2 in M16 x 2; 24 deep	420	0	0
S		Suction port Fastening thread	SAE J518 ⁵⁾ DIN 13	5 in M16 x 2; 24 deep	30	0	
T ₁	-	Drain port	ISO 6149 ⁶⁾	M42 x 2; 19.5 deep	10	X ⁸⁾	_
T ₂	T ₂	Drain port	ISO 6149 ⁶⁾	M42 x 2; 19.5 deep	10	O ⁸⁾	O ⁸⁾
CR	CR	Pilot signal (only at CR)	ISO 6149	M14 x 1.5; 11.5 deep	420	0	0
Н.	Н.	Pilot signal (only at H3, H4, H5, H6)	ISO 6149	M14 x 1.5; 11.5 deep	100	0	0
L.	L.	Override power control (only at L3, L4, L5, L6)	ISO 6149	M14 x 1.5; 11.5 deep	100	0	0
\mathbf{M}_{1A}	$\mathbf{M}_{1\mathrm{B}}$	Measuring, control pressure	ISO 6149 ⁶⁾	M14 x 1.5; 12 deep	420	Х	Х
M _A	MB	Measuring, operating pressure A, B	ISO 6149 ⁶⁾	M14 x 1.5; 12 deep	420	Х	Х
P _A	P _B	External control pressure (Ordering code digit 9 version B or C = with external control pressure supply)	ISO 6149 ⁶⁾	M14 x 1.5; 11.5 deep	50	0	0
		Port P is without function (Ordering code digit 9 version A = without external control pressure supply)	ISO 6149 ⁶⁾	M18 x 1.5; 14.5 deep	420	Х	Х

26 **A28VLO Series 10** | Axial piston variable double pump Dimensions, size 280

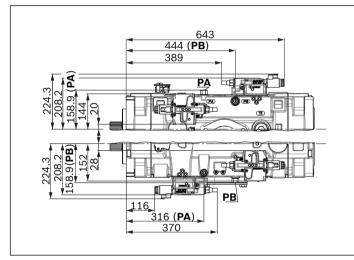
▼ Splined shaft SAE J744

▼ Splined shaft DIN 5480

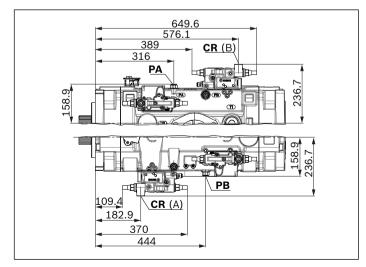
 $_{\rm 1)}\,$ ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5 $\,$

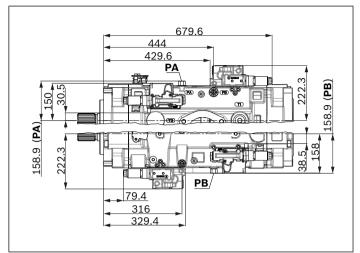

- 3) Centering bore according to DIN 332 (thread according to DIN 13)
- Observe the general instructions on page 32 concerning the maximum tightening torques.
- 5) Metric fixing thread is a deviation from standard.
- 6) The spot face can be deeper than as specified in the standard
- Depending on the application, momentary pressure peaks may occur.
 Keep this in mind when selecting measuring devices and fittings.

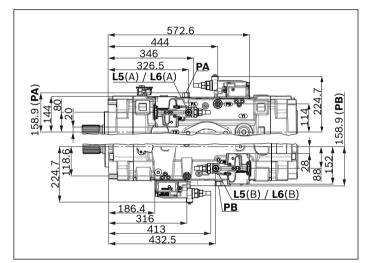
- 9) O = Must be connected (plugged on delivery)
 - X = Plugged (in normal operation)

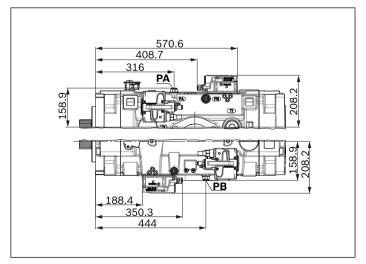

²⁾ Thread according to ASME B1.1

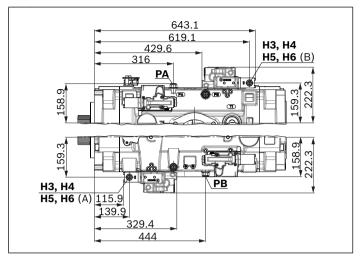
Depending on installation position, T₁, T₂ or T₃ must be connected (see also Installation instructions on pages 30 and 31).


 xxS0 – Additional controller; Load sensing, internal pump pressure, fixed setting


▼ L3/L4 - Power controller, electric-proportional override


 CR – Power controller, hydraulic-proportional override, high pressure, with stop


▼ E1/E2 - Stroke control electric-proportional


▼ L5/L6 - Power controller, hydraulic-proportional override

▼ DR – Pressure controller

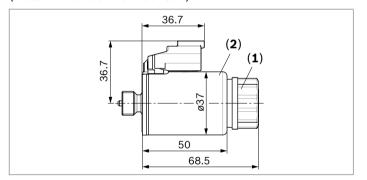
- 28 **A28VLO Series 10** | Axial piston variable double pump Dimensions, size 280
- ▼ H3/H4/H5/H6 Stroke control, hydraulic-proportional, pilot pressure

Connector for solenoids

DEUTSCH DT04-2P-EP04

Molded connector, 2-pin, without bidirectional suppressor diode

There is the following type of protection with mounted mating connector:


- ▶ IP67 (DIN/EN 60529) and
- IP69K (DIN 40050-9)
- ▼ Circuit diagram symbol

▼ Mating connector DEUTSCH DT06-2S-EP04

Consisting of	DT designation
1 housing	DT06-2S-EP04
1 wedge	W2S
2 sockets	0462-201-16141

The mating connector is not included in the scope of delivery. This can be supplied by Bosch Rexroth on request (material number R902601804).

Changing connector orientation

If necessary, you can change the position of the connector by turning the solenoid.

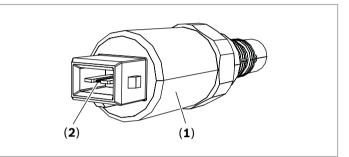
To do this, proceed as follows:

- Loosen the mounting nut (1) of the solenoid.
 To do this, turn the mounting nut (1) one revolution counter-clockwise.
- Turn the solenoid body (2) to the desired orientation.
- Re-tighten the mounting nut. Tightening torque: 5+1 Nm. (WAF 26, 12-sided DIN 3124)

On delivery, the position of the connector may differ from that shown in the brochure or drawing.

AMP Junior-Timer, 2-pin

Type of protection:


IP69K (DIN 40050-9)

The mating connector is not included in the scope of delivery. This can be supplied by Bosch Rexroth on request (material number R901022127); see also data sheet 08006.

Outer diameter of conductor 2.2 mm to 3.0 mm

Manual override

When power supply to the vehicle is interrupted, maximum operating pressure can be established by means of a manual override so that the vehicle can be driven under its own power from a danger zone.

To activate the manual override:

- Unplug the electrical connector from the pressure reducing valve (1).
- Using a pointed tool, press both PINs (2) in up to the stop.

Both PINs must remain in the depressed position!

Installation instructions

General

The axial piston unit must be filled with hydraulic fluid and air bled during commissioning and operation. This must also be observed following a longer standstill as the axial piston unit may empty via the hydraulic lines. Particularly in the installation position "drive shaft upwards", filling and air bleeding must be carried out completely as there is, for example, a danger of dry running. The case drain fluid in the case interior must be directed to the reservoir via the highest drain port (T_1, T_2, T_3) . For combinations of multiple units, the case drain fluid must be drained off at each pump. If a shared drain line is used for this purpose, make sure that the case pressure in each pump is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

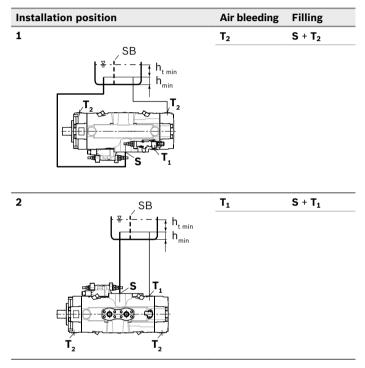
To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the suction line and drain line must flow into the reservoir below the minimum fluid level. The permissible suction height h_s results from the overall loss of pressure. However, it must not be higher than $h_{s max}$ = 800 mm. The minimum suction pressure at port **S** must also not fall below 0.8 bar absolute (without charge pump) or 0.7 bar absolute (with charge pump) during operation and during a cold start.

When designing the reservoir, ensure adequate distance between the suction line and the case drain line. This prevents the heated, return flow from being drawn directly back into the suction line.

Note

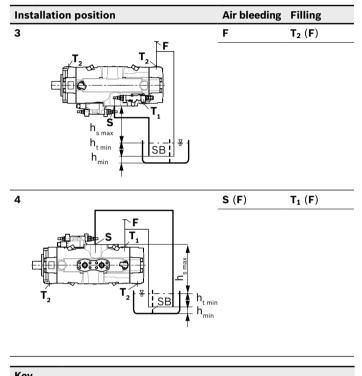
In certain installation positions, an influence on the control characteristic curves can be expected. Gravity, dead weight and case pressure can cause minor characteristic shifts and changes in response time.


Installation position

See examples **1** to **6** below.

Further installation positions are available upon request. Recommended installation position: **1** and **2**

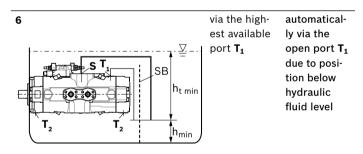
Below-reservoir installation (standard)


Below-reservoir installation is when the axial piston unit is installed outside of the reservoir and below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir. To prevent the axial piston unit from draining, a height difference $h_{ES\mbox{min}}$ of at least 25 mm at port T_2 is required in position 6. Observe the maximum permissible suction height $h_{S\mbox{max}}$ = 800 mm.

Port **F** is part of the external piping and must be provided on the customer side to make filling and air bleeding easier.


кеу	
F	Filling / air bleeding
S	Suction port
т	Drain port
SB	Baffle (baffle plate)
h _{t min}	Minimum required immersion depth (200 mm)
h _{min}	Minimum required distance to reservoir base (100 mm)
$h_{\text{ES min}}$	Minimum necessary height required to protect the axial piston unit from draining (25 mm)
$h_{S \; \text{max}}$	Maximum permissible suction height (800 mm)

Inside-reservoir installation

Inside-reservoir installation is when the axial piston unit is installed in the reservoir below the minimum fluid level. The axial piston unit is completely below the hydraulic fluid. If the minimum fluid level is equal to or below the upper edge of the pump, see chapter **"Above-reservoir installation"**. Axial piston units with electrical components (e.g., electric control, sensors) may not be installed in a reservoir below the fluid level.

Exception: Installation of the pump with E2/E6 control only with HIRSCHMANN connector and if mineral hydraulic fluids are used and the fluid temperature in the reservoir does not exceed 80 °C

Installation position	Air bleeding	Filling
5	via the high-	automatical-
	est available	ly via the
T ₂ T ₂	port T 2	open port T_2
SB SB		due to posi-
		tion below
		hydraulic
S T ₁		fluid level
h _{min}		

Note

Port **F** is part of the external piping and must be provided on the customer side to make filling and air bleeding easier.

Project planning notes

- The A28V(L)O variable pump is designed to be used in open circuits.
- Project planning, installation and commissioning of the axial piston units requires the involvement of skilled personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, request it from Bosch Rexroth.
- Before finalizing your design, request a binding installation drawing.
- The data and notes contained herein must be adhered to.
- Depending on the operating condition of the axial piston unit (operating pressure, fluid temperature), the characteristic curve may shift.
- The characteristic curve may also shift due to the dither frequency or control electronics.
- Preservation: Our axial piston units are supplied as standard with preservative protection for a maximum of 12 months. If longer preservative protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation times apply under optimal storage conditions, details of these conditions can be found in the data sheet 90312 or the instruction manual.
- Not all variants of the product are approved for use in safety functions according to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF_d) for functional safety.
- Depending on the type of control used, electromagnetic effects can be produced when using solenoids. When a direct current is applied, solenoids do not cause electromagnetic interference nor is their operation impaired by electromagnetic interference.

Other behavior can result when a modulated direct current (e.g. PWM signal) is applied. Potential electromagnetic interference for persons (e.g. persons with a pacemaker) and other components must be tested by the machine manufacturer.

- Pressure controllers are not safeguards against pressure overload. Be sure to add a pressure relief valve to the hydraulic system.
- Service line ports:
 - The ports and fixing threads are designed for the specified peak pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.

Safety instructions

- During and shortly after operation, there is a risk of burning on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
- Moving parts in control equipment (e.g. valve spools) can, under certain circumstances, get blocked in position as a result of contamination (e.g. impure hydraulic fluid, abrasion, or residual dirt from components). As a result, the flow of hydraulic fluid and the build-up of torque in the axial piston unit can no longer respond correctly to the operator's specifications. Even the use of various filter elements (external or internal flow filter) will not rule out a fault but merely reduce the risk. The machine/system manufacturer must test whether remedial measures are needed on the machine for the application concerned in order to set the consumer being driven to a safe position (e.g. safe stop) and if necessary to ensure it is properly implemented.

Bosch Rexroth AG

Mobile Applications An den Kelterwiesen 14 72160 Horb a.N., Germany Tel. +49 7451 92-0 info.ma@boschrexroth.de www.boschrexroth.com/brm © Bosch Rexroth AG 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.